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ARGUS: LOW-COST, COMPREHENSIVE
ERROR DETECTION IN SIMPLE CORES

.....................................................................................................................................................................................................................................................

ARGUS, A NOVEL APPROACH FOR DETECTING ERRORS IN SIMPLE PROCESSOR CORES,

DYNAMICALLY VERIFIES THE CORRECTNESS OF THE FOUR TASKS PERFORMED BY A VON

NEUMANN CORE: CONTROL FLOW, DATA FLOW, COMPUTATION, AND MEMORY ACCESS.

ARGUS DETECTS TRANSIENT AND PERMANENT ERRORS, WITH FAR LOWER IMPACT ON

PERFORMANCE AND CHIP AREA THAN PREVIOUS TECHNIQUES.

......Technological trends are leading to
more hardware errors due to both transient
and permanent physical phenomena.1 The
first and most important step in dealing
with these errors is detecting them. Once an
error is detected, the system can avoid silent
data corruption and potentially recover to a
pre-error state and resume execution. In this
work, we focus on relatively simple cores,
rather than speculative, out-of-order cores.
Simple cores are becoming more attractive
because of their low power consumption,
particularly for multicore chips, embedded
applications, and applications for which
throughput is more important than latency.
For example, the UltraSPARC T1 (Niagara)
chip contains eight simple cores, the Cray
MTA consists of simple multithreaded
cores, and the Silicon Packet Processor in
Cisco’s CRS-1 router has 188 Tensilica
Xtensa single-issue, in-order cores. For
many applications of simple cores, reliabil-
ity is important but its hardware and power
costs must be minimal.

Core error detection can be achieved by
simply replicating each core—dual modular
redundancy (DMR)—but this option is
extremely expensive. Even if providing the
required number of transistors is techno-
logically feasible, DMR incurs a large

opportunity cost and approximately doubles
core power consumption. Other detection
schemes exist—such as DIVA and redun-
dant multithreading (see the ‘‘Related
Work’’ sidebar)—but all of them are either
incomplete or expensive, in terms of area or
performance, for simple cores. Our goal is
to provide a low-cost, low-power mecha-
nism for comprehensively detecting tran-
sient and permanent errors in a simple
microprocessor core.

Argus overview
The key insight that Argus exploits is that

von Neumann processor cores perform only
four basic activities: choosing the sequence
of instructions to execute (control flow),
performing the computation specified by
each instruction, passing the result of each
instruction to its data-dependent instruc-
tions (data flow), and interacting with
memory. We have proven that by checking
that these activities are performed correctly,
Argus can detect all possible core errors,
except errors in the parts of the core that
handle I/O, exceptions, and interrupts.2 We
consider Argus to be a high-level error
detection scheme, because these four activ-
ities are not specific to any particular
microarchitecture, design, or implementa-
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tion. This set of activities is similar to the set
of activities that DIVA checks,3 but Argus’
approach to checking them is fundamental-
ly different.

Control-flow checking
A control-flow checker verifies that the

runtime execution path is valid with respect
to the static control-flow graph (CFG) of
the program binary.4 If the static and
dynamic CFGs conflict, an error has been
detected. Unlike many control-flow check-
ers, Argus considers liveness to also be a part
of control-flow correctness.

Data-flow checking
A data-flow checker ensures that the

static data-flow graph (DFG) of the pro-
gram binary matches the DFG reconstruct-
ed at runtime, and that the values traversing
the DFG are not corrupted.5

Computation checking
A computation checker detects errors in

functional units. Some checkers require a
fully replicated functional unit, but many
utilize knowledge about the initial result to
simplify the redundant computation. Sell-
ers, Hsiao, and Bearnson’s book provides an
excellent survey of existing checkers for
adders, multipliers, dividers, bit-wise logic
units, and so on.6

Memory checking
A minimal memory checker must be able

to detect data corruption in the memory
system as well as errors that cause the wrong
data word to be accessed. In more complex
memory systems that support multiple
outstanding requests and potentially multi-
ple cores, faults can also manifest themselves
as incorrect orderings of memory accesses.
We don’t consider this type of error, because
there are only a few unlikely scenarios for
ordering errors in simple cores. An example
of a complex memory checker that could be
used with Argus is available elsewhere.7

Argus-1 implementation
Argus-1 is an implementation of Argus

that illustrates the engineering trade-offs
between checker costs and error coverage.
Although perfect checkers can be designed,

their costs are not always worth their
additional error coverage, as compared to
near-perfect checkers. We have proven that
Argus-1 detects the same errors as an ideal
Argus implementation, except for false
negatives due to finite-size checksums and
memory-ordering errors.2

To obtain realistic information about the
costs and complexity associated with imple-
menting Argus-1, we have built Argus-1 in
Verilog and incorporated it into the Open-
RISC 1200 (OR1200) processor core.8

Baseline OpenRISC processor
The OR1200 processor core is a 32-bit

scalar (one-wide), in-order RISC core with a
four-stage pipeline and 32 general-purpose
registers. This core represents the low end of
the simple cores that are expected to be
used, perhaps in conjunction with a small
number of superscalar cores, in multicore
chips. Figure 1 shows how Argus-1 is
integrated into the OR1200 core.

Control-flow and data-flow checkers
Argus-1’s control-flow and data-flow

checkers are based on our earlier work on
dynamic data-flow verification (DDFV).5

DDFV detects errors in the core’s data flow
by comparing the static DFG specified in the
program to the dynamic DFG within the
processor during execution. To avoid prob-
lems with data-dependent branches, which
dynamically alter the DFG, DDFV performs
checks at the granularity of basic blocks for
which the correct DFG is known at compile
time. Both DFGs are represented using
constant-size signatures. The DFG signa-
tures are computed as a summary of state
history signatures (SHSs) attached to each
architectural location within the system.
Whenever a location is assigned a new value,
its history is updated to reflect the operation
that generated the value and the history of
the input operands to that operation.

The static DFG signatures are computed
at compile time and embedded in the
program such that they can be read by the
processor and compared to the dynamic
signatures computed at runtime. We min-
imized the number of embedded Signature
instructions (NOPs) by storing signature
bits in unused instruction bits; actual
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Signature instructions are embedded only in
basic blocks with insufficient unused bits.

Unified control and data-flow checking. Ar-
gus-1 uses a basic block’s data-flow signa-
ture as both a representation of the block’s
internal control and data flow and a unique,
address-independent block identifier neces-
sary for interblock control-flow checking.
We refer to this single signature as the data-
flow and control signature (DCS).

What enables Argus-1 to use the DCS for
both data-flow and interblock control-flow
checking is the way DCSs are embedded
and used. Unlike DDFV, which embeds a
single signature into each block,5 Argus-1
embeds into each basic block the DCS of
each of its legal successor blocks. At
runtime, the control-flow checker decides,
on the basis of information received from
the computation checker, which of the legal
successors will be executed next, and then

............................................................................................................................................................................................................................................................................

Related Work

There is a long history of research in error detection.

Redundant cores
Replicating a core provides a conceptually simple mechanism for

detecting errors. This approach is, in terms of hardware and power,

prohibitively expensive for commodity hardware.

DIVA
DIVA (Dynamic Implementation Verification Architecture) and Argus

check similar invariants, but DIVA’s approach is quite different.1,2 DIVA

uses N simple checker cores to detect errors in a N-wide superscalar

processor. DIVA is an excellent, low-cost design option for protecting

large cores with simple instruction decoding logic. For example, a DIVA

checker is only 6 percent of an Alpha 21264 core.1 However, for simple,

small cores, there is little opportunity to make the checker cores smaller

than the cores they are checking, so using DIVA becomes almost

indistinguishable from using redundant cores.

Redundant multithreading
There are many varieties of redundant multithreading (RMT) schemes,3

but they all share the goal of using otherwise idle thread contexts to

provide redundancy in SMT cores. RMT has three significant costs: the

performance loss due to thread contention (estimated at 30 percent4), the

opportunity cost of using threads for redundant computation instead of

useful work, and the energy consumed by the redundant threads. RMT

also has the implicit cost of requiring an SMT core and cannot detect

permanent errors in non-replicated units.

BulletProof
The BulletProof pipeline uses built-in self-test (BIST) to detect and

diagnose (isolate) 89 percent of permanent faults,5 but it cannot detect

transient errors. BulletProof increases the area of a four-wide very long

instruction word (VLIW) core, excluding caches, by 9.6 percent. This

overhead is likely to be greater for a single-wide core, because BIST

tables and other checker hardware singletons cannot be amortized over

multiple instances of the units they check.

Software redundancy
Software replication of instructions can serve to detect transient

hardware errors,6,7 albeit at the cost of a 50 percent slowdown for an

out-of-order processor and high energy consumption.7 The performance

loss for a simple in-order core would be roughly 100 percent, owing to the

lack of idle slots in which to execute redundant instructions.

Error detecting and correcting codes
Error codes are excellent at detecting errors in storage and messages.

Certain codes can also check computations. However, error codes are not

applicable to general logic.
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passes the corresponding DCS to the data-
flow checker. If, because of an error, the
wrong successor or any other illegal block is
executed next, the DCS computed by the
data-flow checker will not match the DCS
anticipated by the control-flow checker and,
barring signature aliasing, an error will be
detected.

Data value correctness. Beyond checking
the shape of the data-flow graph, the data-
flow checker must also ensure that data values
are transmitted correctly. To detect errors in
data values, Argus-1 adds a parity bit to each
register and each part of the data path that
carries an operand or instruction result.

Checking liveness. There are many tech-
niques for checking liveness, including simple
watchdog units.9 Our watchdog has a six-bit
counter. At every clock cycle, the counter is
reset if the pipeline is not stalled, and is
incremented when the pipeline is stalled.
When the counter saturates, the watchdog
indicates an error. To bound the time between

control-flow checks, Argus-1 also requires a
fixed limit on the size of basic blocks.

Computation checker
The computation checker consists of

several functional-unit subcheckers. Fig-
ure 2 shows how Argus-1 is integrated into
a functional unit. For each functional unit,
we have a subchecker and an SHS compu-

Figure 1. Summary of Argus-1 implementation.

Figure 2. Functional unit with error detection.

........................................................................

JANUARY–FEBRUARY 2008 55



tation unit. The subcheckers are similar to
previously developed mechanisms for check-
ing computation (for example, using modulo
arithmetic to check multiplication).6

Memory checker
The memory hierarchy consists of the

core’s load-store unit, caches, and main
memory. Argus-1 detects address computa-
tion errors using an adder checker like the
one used for checking the ALU’s adder.
Argus-1 also detects errors in data realign-
ment in byte and half-word (16-bit) loads
and stores using the ALU’s subchecker. To
detect data corruption, Argus-1 adds parity
to each word in the data cache and
memory—assuming an error detecting code
(EDC) is not already present. No parity is
needed for the instruction cache, because
errors in instructions will cause incorrect
control flow or data flow. Argus-1 also
protects against errors that cause a load or
store to access the wrong word, despite
providing a correct address, by embedding
the physical address into the data in the
caches and memory.2

Argus-1 cannot detect memory errors in
two concrete, yet unlikely, scenarios: an
access that misses in a cache even though it
should have hit, and a store issued to the
cache that does not perform the actual
write. We could modify Argus-1 to detect
such errors by adding redundant tag
comparisons and verifying reads after every
store. Because of power consumption and
performance considerations, we decided
against these options.

Experimental evaluation
The goals of our evaluation are to confirm

Argus-1’s error detection coverage and deter-
mine its area and performance overheads.

Error detection coverage
An Argus implementation with perfect

checkers can detect all possible single-error
scenarios (and many multiple-error scenar-
ios) in the nonexceptional part of the core.
However, because of physical constraints,
the Argus-1 implementation has sacrificed
some small amount of error coverage.
Argus-1 cannot detect errors in exception
and interrupt logic, errors due to aliasing (in
data checksums, DCS, and the multiply
checker), and some memory errors de-
scribed earlier.

We performed error injection experi-
ments to empirically test Argus-1’s error
detection coverage. We performed the
experiments while the core was running a
stress-test microbenchmark that involves a
broad range of registers and instruction
types. We injected single transient and
permanent bit-inversion errors in all por-
tions of the microprocessor core, including
the features added for Argus-1. From
among the roughly 40,000 total gates, we
randomly sampled 5,000 gate outputs on
which to inject bit flips. We did not inject
errors in the caches, but we did inject errors
in the core’s interface to memory.

For each error injection experiment, we
classified its result along two axes. First, was
the error detected? Second, was the error
masked? The errors that we want most to
avoid are unmasked, undetected errors,
which represent silent data corruptions. In
Table 1, we show the results of these
experiments. One result not listed in the
table is that Argus-1 never reported false
positives (errors that did not actually occur).

Unmasked errors. Most importantly, we
observe that silent data corruptions are
extremely rare, compared to detected errors.
Of the unmasked transient and permanent
errors, Argus-1 detected 98.0 percent and
98.8 percent, respectively.

We examined which parts of Argus-1
were responsible for detecting each error.
The computation checkers were responsible
for 45 percent of detected errors. The next
largest contributor to error coverage was
parity (on operands, registers, and load
values), which caught 36 percent of detected
errors. The DCS comparison caught 16

Table 1. Error injection results.

Error type

Unmasked,

undetected*

(%)

Unmasked,

detected

(%)

Masked,

undetected

(%)

Masked,

detected

(%)

Transient 0.76 37.4 38.2 23.7

Permanent 0.46 37.6 38.2 23.7..........................................................................................................................
* Silent corruptions
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percent, and the watchdog caught 3 percent.
These results confirm that a composition of
all checkers is necessary to achieve good
coverage.

Masked errors. A large fraction of injected
errors were masked, which is not surprising.
All errors in Argus-1 hardware are masked,
because they have no impact on the
OR1200 core’s execution. Of the masked
errors, Argus-1 detected 38.3 percent.

Area overhead
We used our CAD tools, Synopsys

Design Compiler and Cadence Silicon
Ensemble, to floor-plan and lay out the
core, both with and without Argus-1. We
did not include the debugging hardware or
the translation look-aside buffer (TLB).
Our CAD tools use the publicly available
VTVT 0.25-mm standard cell library.10 We
present our results in Table 2. We first
observe that the unmodified OR1200 core
requires an area of 6.59 mm2 (2.565 mm 3

2.565 mm), and the core with Argus-1 uses
16.6 percent more area. Most of Argus-1’s
area is consumed by history fields and
signature computation logic used for data-
flow and control-flow checking. The various
computation checkers are the second major
area contributor. The remainder of Argus-
1’s area is for control logic and the
watchdog timer.

To determine total chip area overhead
(not only core area overhead), we used Cacti
3.0 to calculate the area of the caches.11

Both the instruction and
data caches are 8 Kbytes.
Argus-1’s data cache adds
area for parity, but, as we’ve
mentioned, Argus-1 does
not need to add parity to
the instruction cache. If we
compare Argus-1 to an
unmodified OR1200 chip
(with no error detection on
the core or caches), Argus-1
consumes only 10 to 11
percent more area.

Performance overhead
Argus-1’s error detection

hardware does not cause

any pipeline stalls or delay instruction
retirement, because Argus-1 is designed to
invoke backward error recovery once an
error is detected. Our CAD tools also
showed no increase in any critical paths
due to Argus-1 logic, and thus we do not
expect changes in clock cycle time. Hence,
Argus-1’s only potential impact on core
performance comes from having Signature
instructions embedded in the instruction
stream when insufficient unused bits are
available to store the DCSs. Signature
instructions consume instruction cache
space as well as fetch and instruction
decoding bandwidth. We use the OR1200
simulator and the MediaBench benchmark
suite12 to analyze how this impacts perfor-
mance. We assume a memory configuration
typical for an embedded system; the data
and instruction cache are each 8 Kbytes and
two-way set-associative; hits take one cycle;

Table 2. Area overhead for adding Argus-1 error detection.

Component

Area (mm2)

Area

overhead (%)

OR1200

alone

OR1200 with

Argus-1

Core 6.58 7.67 16.6

Instruction cache: 1-way 2.14 2.14 0

Instruction cache: 2-way 2.42 2.42 0

Data cache: 1-way 2.14 2.24 4.9

Data cache: 2-way 2.42 2.54 5.1

Total: 1-way 10.86 12.05 10.9

Total: 2-way 11.42 12.63 10.6

Figure 3. Argus-1 runtime overhead (two-way cache).
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and misses take 20 cycles. In Figure 3, we
plot Argus-1’s performance impact. The
observed slowdown varies greatly between
benchmarks, but it never exceeds 10
percent, and it averages only 3.2 percent
across all benchmarks.

W e expect simple cores to remain
popular for many embedded ap-

plications as well as for multicore chips, and
detecting errors in such cores is important
for ensuring dependability. Argus provides a
viable, efficient, low-cost solution to this
problem. The key to Argus’ efficiency is to
check invariants instead of components. In
addition to improving efficiency, invariant
checking also makes it is easier to formally
reason about Argus’ error coverage capabil-
ity. The next step in this project is to
increase Argus’ error detection coverage to
include the exceptional portion of the core
and to integrate Argus with a previously
developed mechanism for detecting errors
in the memory system.7 Another avenue of
research we are pursuing is to provide
mechanisms for diagnosing and recovering
from errors detected by Argus. MICRO
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