Duke University
Department of Electrical and
Computer Engineering

Senior Honors Thesis
Spring 2008

Proving the Completeness of Error Detection
Mechanisms in Simple Core Chip Multiprocessors

Michael Edward Bauer
Advisor: Dr. Daniel J. Sorin
Submitted: April 22, 2008

Abstract

As transistor sizes have continued to scale down, the rate of both soft and hard
errors occurring in processors has continued to grow. Ultimately these effects
will come to dominate program execution, making it impossible to execute pro-
grams correctly without some form of error detection mechanism. Traditionally
error detection mechanisms have relied on hardware replication or software re-
dundancy to check for errors at a high cost in area, power, or performance.
Recently, however new mechanisms have been developed to dynamically per-
form error detection in both single core and multicore processors with low area
and performance overhead. This thesis proves the correctness and complete-
ness of these error detection mechanisms, thereby demonstrating that they can
comprehensively detect all errors occurring in chip multiprocessors composed of
simple cores.

Contents

1

2

Introduction 4
Von Neumann Program Execution Invariants 5
2.1 Dataflow. 5
2.2 Control Flow 7
2.3 Computation 8
24 Memory 8
Checking Single Core Execution: Argus 8
3.1 Dataflow Verification 9
3.2 Control Flow Verification 9
3.3 Computation Verification 10
3.4 Memory Verification oo 10
Proving the Completeness of Argus 11
4.1 Argus Completeness 11
4.2 Equivalence of Argus-1to Argus 15
Extending Error Detection to Multicore Processors Using Dy-

namic Verification of Memory Consistency 17
5.1 Uniprocessor Ordering 17
5.2 Cache Coherence, 18
5.3 Allowable Reordering 18
Proving the Completeness of Argus with DVMC 18
6.1 Three Lemmas 19
6.2 Argus with DVMC Completeness 20
Discussion 21
7.1 Experimental Verification 21
7.2 Area Overhead 22
7.3 Future Work 22
Conclusion 23

1 Introduction

The continual scaling of transistor sizes has resulted in transistors becoming
more vulnerable to soft faults [1]. In addition to this, smaller transistors are
more prone to suffer from hard faults either in time or during the manufacturing
process [2]. The combination of these increasing fault rates has led both chip
and software designers to search out mechanisms for performing error detection
during run time.

In general, most error detection mechanisms have relied on replication of some
form to detect errors. DIVA presents a hardware mechanism for using a much
smaller and simpler core to check the execution of a complex out-of-order core,
incurring a small area and power overhead [3]|[4]. Active-Redundant Simulta-
neous Multithreading (AR-SMT) takes the approach of duplicating threads to
reduce area overhead, but still incurs a performance and a power penalty [5].
While these approaches have certainly addressed the issue of detecting errors,
they have done so at a high cost of area, power, and performance.

In conjunction with the increased focus on fault tolerance, chip manufactur-
ers have been using the growing number of transistors to put many simple cores
on a chip instead of a few complex cores [6]. While error detection mecha-
nisms with small overheads on complex, out-of-order cores can be built, very
few are able to check simple cores without a high overhead. For example, DIVA
has minimal area and power overhead when checking a large out-of-order core.
However, for smaller cores, the verifying core will not be much smaller than the
simple core itself, leading to an almost 100% area and power overhead. The
difficulty of checking simple cores in the emerging multicore domain has led to
the creation of new error detection mechanisms for simple cores.

Argus is a novel approach developed by Meixner for comprehensively detect-
ing errors in simple cores with minimal area, power, and performance overhead
[7]. Argus makes use of the invariants present in the execution of a program
in the Von Neumann computing model to check for errors. One of the primary
contribution of this thesis is not the actual implementation, but the proof of
Argus’ correctness and completeness. For this reason only the components nec-
essary for proving the completeness of the Argus error detection mechanism will
be discussed in this work. In addition to Argus, Meixner has also developed a
method for the Dynamic Verification of Memory Consistency (DVMC) mod-
els [13]. This system will be employed to check the memory system in a chip
multiprocessor. Proving that composition of Argus with DVMC is complete in
its error detection coverage of a chip multiprocessor with simple cores is the
other major contribution of this thesis. Since the focus is again on the proof,
only the details of DVMC necessary for demonstrating that all errors in a chip
multiprocessor can be detected will be discussed. The primary contribution of
this thesis is the demonstration that both Argus and the composition of Argus
with DVMC are complete in their error detection coverage.

In this thesis, the Von Neumann model of computation is first explained to
gain some insight into the invariants that will be used to check the execution
of simple cores. The checking mechanism for a single simple core will then be
described and the proof demonstrating its correctness and completeness will be
given. Another error detection mechanism necessary for checking memory in a
chip multiprocessor environment is then explained as background for the last
proof. Finally, a proof that the combination of a simple core checking mecha-
nism and a memory checking mechanism can completely detect all errors in a
chip multiprocessor will be given.

2 Von Neumann Program Execution Invariants

Over the course of the history of computing, the Von Neumann computer has
emerged as the primary computing model in use today. Associated with the Von
Neumann programming model are several invariants that are exploited by Argus
to detect errors in simple cores. In order to understand how Argus makes use
of these invariants, it is first necessary to define a Von Neumann programming
model and its method of execution. The Von Neumann programming model
consists of:

e A sequence of instructions that specify the program to be executed. Each
instruction is assigned a number and each instruction appears to execute
atomically.

e A program counter (PC) that specifies the current instruction that is being
executed

e A machine (or computer) that is capable of executing the instructions
specified in the instruction stream.

e A memory where the machine is capable of storing information and re-
trieving it at a later time

Having defined the Von Neumann programming model it is claimed without
proof that the Von Neumann model consists completely of four invariants:
dataflow, control flow, computation, and memory interaction. The proof that
these four invariants completely define execution will be given later. Each of
these four invariants is now discussed in detail.

2.1 Dataflow

Whenever a program is executed there are certain dependencies that exist in the
program. In general there two types of dependencies: true dependencies and
false dependencies [8]. True dependencies specify data dependencies where the
value produced by one instruction is used as an input to a second instruction.
False dependencies on the other hand are often system dependent such as two

addrl, r2. 13 addrl. 12, 13 subr2, 12, r3 mult 4, 13, r5

sub 12, 12, 13
mult r4, r3, 13

i1 £l £2
ado.fl g, 2 addrl, rl, 12 mult r4, 12, r4

mult r4. 12, r4
addrl. rl. 2
sub 2. 14, rl

e L addrl.rl, 2 subr2, r4, rl multr3. rl, r4

Figure 1: This figure gives an example of a short instruction stream and its
associated static dataflow graph. True dependencies are represented by arrows
between the different nodes.

instructions competing for the same ALU. Using these true dependencies the
concept of a program dataflow graph can then be constructed [9)].

A static dataflow graph is a directed acyclic graph that is constructed in the
following manner:

e A node for every static instruction specified in the program

e A directed edge from one node to another indicating a true dependence
between the two instructions

It is important to note that the complete static dataflow graph cannot be con-
structed in its entirety for almost all programs. This is a direct consequence
of the existence of control flow instructions that can specify more than one PC
following the completion of an instruction (i.e. a branch on equal instruction).
Given a program’s inputs, the complete dynamic dataflow graph can be created
because all of these control dependencies (discussed in the next section) are re-
solved. However, with limited information only parts of the dynamic dataflow
graph can be constructed. These smaller sections of the program’s dataflow
graph that are known without the program’s input values are referred to as
static dataflow blocks. An example of a static dataflow block and its corre-
sponding static dataflow graph can be seen in Figure 1.

Returning to the model of Von Neumann execution, the dataflow invariant
is the following: for each static dataflow block the corresponding dataflow graph
1s fully defined and must be executed identically every time the program executes
that particular block in order to ensure correct execution. Given that this in-
variant must hold for every execution there is now a way of defining what the
correct execution of static dataflow block is.

Static
Data Flow
Block

1
I

N

Static Static
Data Flow Data Flow
Block Block

2 3

Static
Data Flow

Block
4

Figure 2: This figure demonstrates how control flow can specify the movement
to multiple correct static dataflow blocks. In this example, block 1’s set of all
acceptable blocks consists of blocks 2 and 3. It should never be possible to move
from block 1 to block 4.

2.2 Control Flow

As was noted in the previous section there exists a level of ambiguity with regard
to generating a program’s entire dynamic dataflow graph. This ambiguity arises
as a result of control flow instructions that dictate how a program moves from
one static dataflow graph to another. With most control flow instruction there
are usually two different static dataflow blocks that are both considered to be
correct destinations, as can be seen in Figure 2. In this case it is necessary to
check that the program transitions from one static dataflow block to another
acceptable static dataflow graph. It is important to note here that it is not
necessary to check that the move is to THE correct block, but that the move
is to a block in the set of acceptable blocks. Checking that the move is to the
correct block within the set of all acceptable blocks is handled in the next section.
The control flow invariant of Von Neumann execution is then that all control
flow statements must only result in moves to an acceptable static dataflow block.
In addition to this invariant, it is also necessary for the program to continue
to make forward progress. The combination of the control flow invariant and

forward progress ensures that the control flow of a program is correct.

2.3 Computation

The computation invariant of the Von Neumann programming model is much
more intuitive. This invariant requires that all computations and comparisons
that constitute the execution of an instruction are carried out correctly. It is
important to note that this has ramifications for more than just basic arithmetic
instructions. For example, in the case of a control flow instruction such as
branch-on-equal, it is necessary that the comparison be evaluated correctly.
This does ensure that the program transitions to the correct static dataflow
block. In general, this invariant requires that any form of computation, either
directly related to the program or indirectly related, must be executed correctly.

2.4 Memory

The last invariant of the Von Neumann programming model concerns the nature
of memory accesses. This invariant holds that each read to a specific address
in memory will observe the value of the most recent write to that same memory
address. This invariant is necessary to ensure that the Von Neumann machine
is capable of interacting with the memory system in a consistent manner. It is
important to realize that this invariant also requires that memory state not be
corrupted over time. Each read or write requires two different components of
the access to be correct:

1. The memory address accessed is the one that is specified

2. The data intended to be read to or written from the specified memory
address is actually read or written correctly

Both of these steps in executing a memory access must be performed correctly
in order for the memory access to be considered correct. The exact reason for
breaking down an access into two stages will become evident in the next section.

3 Checking Single Core Execution: Argus

In this section the checkers that are used by Argus to verify the invariants of a
Von Neumann program execution are described [7]. Due to the limited scope
of this thesis not all of the details regarding the actual implementation of the
checkers will be described. Only those conceptual details that are necessary for
proving the completeness of Argus will be mentioned. The differences between
an ideal implementation of Argus and a first implementation of Argus (Argus-
1) on a real OR1200 core [10] will also be described as it will be necessary for
proving that Argus can be mapped onto a real world core.

3.1 Dataflow Verification

The key idea exploited by Argus for performing dataflow verification is that
every execution of a program must execute the static dataflow blocks exactly as
they are specified at compile time [11]. Since these dataflow blocks are known
to be unique for this program, a signature can be used to represent the explicit
static dataflow graph of each dataflow block. This is done by creating a State
History Signature (SHS) for each architectural register in the core. For each in-
struction, the SHS of the destination register is then some function of the SHS
values of each of the source registers and the type of operation. For example,
for the instruction ’add r1,r2,r3’, the SHS associated with register 1 would be
updated as SHS;1 = f(SHSy1,SHSy2,SHS,3,’add’). By applying this proce-
dure over the course of an entire static dataflow block, Argus is then able to
generate a signature representing the entire static dataflow block by computing
a function of all the architectural registers’ SHS’s at compile time. During run
time this procedure is repeated and the values are compared after the execution
of each dataflow block. In addition to checking that the dataflow graph is struc-
tured correctly, an ideal implementation of Argus places error detecting codes
(EDC) on every register to ensure that data is stored and transported correctly
within the processor.

There are several noticeable differences between the ideal implementation of
dataflow verification and the practical one. First, in an ideal implementation
the SHS’s could be stored in registers of infinite size. This would allow for reg-
isters that would never be prone to any signature aliasing. Instead, finite size
registers are required for an actual hardware implementation. This leads to the
use of hash functions that could potentially alias errors by mapping an erro-
neous value to the signature that is equivalent to the correct execution. In this
case it is conceivable that an error might go undetected a very small probability
of the time in a practical implementation. Lastly, it is infeasible to put error
detection codes on every register in the system as this would result in significant
area and power overhead.

3.2 Control Flow Verification

In order to check the control flow invariant of Von Neumann execution, Argus
first creates a new SHS that is associated with the Program Counter, SHSpc.
This register holds a signature that is updated whenever a branch or a jump
instruction is executed to reflect the new static dataflow block that was chosen.
This value can then be checked after a finite number of static dataflow blocks
have been executed in order to ensure that the control flow invariant of the
program has been upheld.

In practice Argus actually combines dataflow and control flow checking by map-
ping the SHS for registers and the PC into a single Dataflow and Control Flow
Signature (DCS). The details of this are beyond the scope of this paper, but it

does allow checking at a basic block granularity with some control flow inside of
the basic block instead of a static dataflow block granularity. For the remainder
of this paper, all discussion will focus on the execution of basic blocks instead
of static dataflow blocks.

Argus’ actual implementation of control flow checking again suffers from the
potential of error aliasing due to a finite register size for SHSpc. This could
lead to potential errors in control flow going undetected. Argus also implements
a simple watch-dog timer in order to ensure that program is making forward
progress which is another requirement of control flow. One potential downfall of
this approach is that an error could occur in the watch-dog timer that causes it
to stop monitoring program execution, allowing for the chance that the program
incurs another error that halts forward progress.

3.3 Computation Verification

Checking computation is an extremely well studied field and Argus employs
methods from [12] as well several other sources. The details of these checkers
are beyond the scope of this paper. It is to be noted that because multiplication
and division are checked using modulo arithmetic, there exists a small but non-
zero probability that aliasing could occur in the checking of these operations.
However, for the purposes of this thesis all computations are verified completely
by the checkers in Argus.

3.4 Memory Verification

In order to verify a program’s interaction with memory satisfies the Von Neu-
mann memory invariant, an ideal version of Argus checks that the memory
address that is to be accessed is correct and that data written to or read from
the address is also handled correctly. To verify the first step, Argus maintains
a SHS associated with memory, SHS,,em. This register records all of the ad-
dresses that are accessed using a signature similar to the other SHS registers.
This signature is then included in the computation for the DCS for each basic
block and compared with the signature generated at compile time. To verify the
second step, an ideal implementation of Argus applies an EDC on every location
in memory and uses the EDC to check for errors after reads. To verify that a
value was written correctly, an ideal implementation of Argus executes a load
to the same address that the data value was just stored to and compares the
values to ensure that they are the same. By checking both of these sub-steps of
a memory access, an ideal implementation of Argus is able to check the memory
invariant of the Von Neumann programming model.

An actual implementation of Argus differs slightly from the above description.
First, the SHS,em register is again limited to finite length, introducing the
small probability that aliasing will occur. Second, the ability to replay stores
with a load to the same address is extremely costly in terms of performance.

10

For this reason, in most implementations (including Argus-1) this step will be
omitted, creating the possibility that stores will silently not be written. Lastly,
putting EDC on all memory locations does not guarantee that all data corrup-
tions in memory will be detected. For example, if single error detection (parity)
is placed on all locations, it is conceivable that a location receives two different
bit errors over the course of a long period of time between accesses, leading to a
silent error. While these are implementation details, they are still necessary for
proving that an ideal implementation of Argus can be mapped onto a practical
implementation and for knowing which holes exist in this mapping.

4 Proving the Completeness of Argus

In this section the completeness of Argus’ error coverage is proved. The result
and technique for this proof is one of the primary contributions of this thesis.
The key insight is that the execution of a program in the Von Neumann pro-
gramming model can be explicitly represented as a unique graph, and that each
property of this graph is verified by one and only one invariant checked by Ar-
gus. After showing that an ideal implementation of Argus can completely detect
all errors on simple core, it is then shown that the Argus-1 implementation with
known holes described above is equivalent to Argus.

4.1 Argus Completeness

In this proof it is assumed that the system model consists of a set of finite
registers which will be denoted by R and a finite set of memory locations de-
noted by M with no interrupts, exceptions, or I/O and purely physical memory
system (e.g. no virtual address space). The program that is being executed is
composed of a series of instructions that are executed sequentially, consistent
with the Von Neumann model of execution. Instructions are defined as a pair of
n-tuples and a function, with the first n-tuple specifying the input registers, the
second n-tuple specifying the set of output registers, and the function specifying
the operation to be performed on the input registers and written to the output
registers.

A time step in this system is a single cycle. For purposes of this system model
it is assumed that a single instruction is executed every cycle. The implemen-
tation of Argus is then able to check each instruction individually and does not
have to be concerned with multiple instructions being in flight at the same time.
While this assumption may appear at first unrealistic, consider that this is the
appearance that all modern day processors present to the programmer as part
of the Von Neumann model of execution.

Having defined the basic system model that is used to describe the program

and its execution, it is now possible to construct a graph that represents the ex-
ecution of a single program on the given system model. It is assumed that there

11

Processor State at Time ¢ Processor State at Time t+7

e
Register

State R,

Memory
State M,

Lasandibiasss
L (S

Figure 3: This figure gives an example of one step in an execution graph. Notice
that in this example, multiple events are occuring as data is being both read
from and written to memory. In addition to this a computation of some form
is occuring as can be seen by the two edges meeting at the computation node
in between the two different states.

is a single instruction stream with all data dependencies resolved. While these
data dependencies actually are resolved at run time, it is easier to deal with the
idea of a single abstract instruction stream, which is what is ultimately attained
in any Von Neumann model of execution. The execution of the program on the
system is then constructed as a graph mapping the state of the system at time
t to time ¢ + 1. The graph can be defined as follows:

e For each time ¢ there is a node representing the state of a register r; or
memory location m;. R; then represents the set of all registers at time ¢
and M represents the state of all memory locations at time t. S; = R;UR;
represents the state of the entire system at time ¢. Each node posses two
pieces of information: an address and a data value. The address associated
with the node is unique to the node. The data associated with the node
can be overwritten and also moved.

e A surjective mapping of edges from S; to S;+1 that represents the exe-
cution of a single instruction in the system. It is important to note that
although |S;| = |Si4+1] this mapping is not bijective because each regis-
ter s; can provide one or more inputs to the function of the instruction.
Each node in S;y1 contains only one incoming edge. The algorithm for
constructing these edges will be defined momentarily.

An example of the execution graph can be seen in Figure 3. The most impor-
tant property of this graph is that it is unique to a correct program execution.
Provided with an initially correct state at time ¢ = 0 it is possible to iterate

12

one step at a time and build the next state. Regardless of processor details, any
machine that maintains this model of execution must generate this execution
graph exactly in order to achieve a correct result. The algorithm for stepping
from time step t to time step ¢t 4 1 is specified as follows:

1. Obtain the ' instruction and decode its properties including its func-
tion, source registers, destination registers, and any memory locations
with which it might interact

2. For each register in the input n-tuple, create an edge originating at that
node and propagating to a functional node that performs the specified
function on the n-tuple of inputs

3. For each register in the n-tuple of outputs, create an edge originating at
the functional node and ending at the corresponding output register in

St+1.

4. For all remaining nodes in S;41 not already containing an incoming edge,
create an identity edge that maps directly from the corresponding register
in S;. These edges handle the case of showing that some state remains
the same during the course of a single instruction’s execution.

Each edge is then labeled with weight equivalent to the value of the data stored
in the node that the edge originates from. This data then flows along the edge
and is written into the value of the node at the destination of the edge at time
t 4+ 1. The one exception to this is with regard to the edges that specify input
or output to the functional node. These edges carry their weight either to or
from the specific functional node.

An algorithm for creating a unique program execution graph has now been
given. Since it is known that any deviation from this graph will result in an
error, it is now necessary to show that all properties of the graph are checked at
all times. The invariants checked by Argus each correspond to checking some
properties of this graph:

Dataflow - The dataflow invariant discussed earlier explicitly checks two differ-
ent properties of in the execution graph. First, the dataflow invariant ensures
that the shape of the graph is correct with respect to the existence and place-
ment of different edges. This is done by checking that the source of all functional
input edges originate at nodes specified by the input n-tuple and that all output
edges terminate at a node specified by the output n-tuple. The dataflow checker
also verifies that all identity edges are correct as the SHS values associated with
values not modified by the function must still be correct.

In addition to checking that the shape of the graph is correct, the dataflow

checker also ensures that the data values traveling along edges between any two
registers, from a register to functional node, or from a functional node to a

13

register are all correct. This property is ensured by the presence of EDC on all
of the edges. Note that this applies to identity edges as well.

Control Flow - The control flow invariant checks that the correct instruc-
tion is fetched and performed every cycle. This ensures that the step from S; to
Si41 is represented by the correct instruction and that the operation specified
by the given instruction is actually the one performed. This corresponds to
checking that the function of the functional node is what it is specified to be.

Memory - The memory checker checks that any edges that originate or termi-
nate within the memory have correct shapes and values. The memory checker
requires that EDC is on all memory values and that all data passed to or from
memory be checked by EDC. This checks that all data flowing along an edge is
correct. The memory checker also verifies that the addresses of memory accesses
is specified correctly. This then ensures that all edges that contain a register
origin (destination) and a memory destination (origin) have the correct source
and destination nodes. This then checks the shape of all memory accesses. It
should be observed that the shape of identity edges in memory are not explicitly
checked as there is no means of directly moving data from one memory location
to another.

Computation - This last invariant is simply related to the execution graph
by verifying that the result of the operation performed by the function node is
indeed the correct result.

The properties of the graph that are verified by the different invariant checkers
has now been identified. The last step is to prove that these properties can be
used to check all properties of the graph at all times.

Argus Completeness Theorem. The ideal Argus implementation is capable
of detecting all errors at all times in simple cores.

Proof: This theorem will be proved using induction.

Base Case(t = 0): Instead of assuming that the initial state is inherently
correct, it is instead assumed that the correct initial state of any system can
be specified externally. A checksum (i.e. CRC) can then be used to determine
whether the current state of the system is equivalent to the previously specified
correct initial state.

Induction Case(t — t + 1): This step assumes initially that all the values
present in S; are correct. It is then necessary to demonstrate that all the values
in S;41 are also correct. It is known that the control flow checker verifies the
correctness of the instruction that is obtained to compute the state at ¢ + 1.
This control flow checker also ensures that the operation that is performed by
the functional node is the correct operation to be executed.

14

With respect to the shape of the graph, the source and destination of each
edge is verified by the dataflow checker or the memory checker depending on
the source and destination types of the edge as described previously. The value
along each edge is also checked by an EDC specified by either the dataflow or
the memory checker. This then ensures that the shape and value of each edge in
the transition from ¢ to t + 1 must be correct. Finally, the computation checker
verifies that the output of the functional node is the correct result that should
be obtained when applying the specified operation to the given inputs.

This then demonstrates that all the properties of the execution graph are speci-
fied correctly and that the values that flow from t to t+1 are completely checked
by the Argus error detection mechanism. Having shown this to be true for any
transition from state S; to Sy41 it is possible to conclude that an ideal imple-
mentation of Argus is capable of detecting all errors at all times in a simple
core. [

4.2 Equivalence of Argus-1 to Argus

Having demonstrated the completeness of Argus, it is important to show that a
more practical implementation of Argus, in this case Argus-1, is equivalent with
some known holes to the implementation of an ideal version of Argus. It has
been previously noted that there are several holes such as the finite SHS register
size that could result in the Argus-1 implementation permitting silent errors.
However, the primary concern here is whether checking dataflow and control
flow on a basic block granularity is equivalent to checking one instruction per
cycle. Using the framework developed previously it will be shown that Argus-1
and Argus are equivalent with the admission of several known holes in Argus-1.

Argus-1 Equivalence Theorem. The Argus-1 implementation is equivalent
to the ideal Argus implementation with the assumption that all checking mech-
anisms are error free and there is no aliasing in any checksums or signatures.

Proof. It has already been proved that the Argus implementation is com-
plete. It is sufficient therefore to show that Argus-1 can be reduced to Argus.

It is assumed that all checking mechanisms are error free and that no alias-
ing occurs in the signatures or checksums. It is also acknowledged that Argus-1
does not replay stores to ensure that data was actually written correctly into
memory. Acknowledging these holes in the system, it remains only to show that
the basic block granularity of checking performed by Argus-1 is equivalent to
the instruction granularity of checking performed in the ideal version of Argus.

It is necessary for the purposes of this proof to modify the execution graph
slightly since checking is now being performed following the execution of several
instructions associated with a basic block. The initial state is specified by S;
and the final state is specified by S;4.,, after the n instructions in the basic block

15

are executed. Instead of representing the entire state of the system at interme-
diate nodes, only nodes that are updated by the output of an instruction are
shown in the intermediate states. The algorithm for creating and placing edges
is exactly the same as before except the first three steps are repeated for all n
instructions before completing the algorithm with the fourth step. This ensures
that identity edges map information that goes unchanged during the course of
an entire basic block. Having constructed this new framework for basic block
granularity execution, it is now possible to consider the properties of this graph
that are checked by the Argus-1 implementation.

Dataflow - The dataflow checker implemented in Argus-1 is able to build a
signature that directly corresponds to the correct dataflow graph to be exe-
cuted regardless of the number of instructions that are contained in the dataflow
graph. This implies that the signature created by the dataflow checker after the
execution of a basic block must be equivalent to the signature of the dataflow
graph at compile time. The dataflow checker therefore verifies that dataflow
invariant is upheld under basic block granularity checking.

Control Flow - The control flow checker is able to verify that the set of instruc-
tions performed during the execution of the basic block is correct by generating
a signature corresponding to the instruction stream that was executed. Since
this signature must be the same for a basic block regardless of the number of
instructions in it, then the control flow checker is able to detect any errors in
control flow within a basic block.

Computation - Since the computational checkers are able to verify the result of
one function at a time, they are able to verify the computation of all instructions
within a basic block since never more than one instruction is executed per cycle.

Memory - The memory checker operates similarly to the control flow checker.
A signature is maintained that represents all of the loads and stores performed
during the execution of a basic block. The memory checker is therefore able
to verify that all memory accesses are performed to the correct locations. The
memory checker is unable to verify that stores are actually written, but this is
a known hole.

Finally, it should be noted that a watch-dog timer ensures that basic blocks
are of finite size and that a check is reached within a finite period of time. Since
all the properties of the graph from S; to Siy, have been shown to be verified
by Argus-1 or are known to the user as holes, then Argus-1 is equivalent to an
ideal implementation of Argus. [J

16

5 Extending Error Detection to Multicore Pro-
cessors Using Dynamic Verification of Mem-
ory Consistency

It has now been shown that errors can be completely detected within simple
cores. However, in the presence of chip multiprocessors with many simple cores
[6] it is necessary to also verify the correctness of the memory system. Previously
Argus was able to verify the correctness of the memory system by assuming that
there was only one processor accessing the memory. However, in a chip multi-
processor environment, multiple processors can be trying to access the memory
system simultaneously. Ensuring that these accesses occur both coherently and
consistently is a very difficult problem.

Dynamic Verification of Memory Consistency (DVMC) is a run time checker
developed by Meixner that is able to verify that all memory accesses in a mul-
ticore environment are performed correctly with respect to a specified memory
consistency model [13]. A proof that this memory checker comprehensively de-
tects all errors with respect to the memory consistency model can be found in
[14]. In order to be able to use DVMC in conjunction with Argus to check
an entire chip multiprocessor, it is first necessary to understand the invariants
checked by DVMC with respect to the memory system. Only the conceptual
elements necessary for proving the completeness of Argus with DVMC will be
presented here.

Before investigating the different variants upheld by DVMC it is first neces-
sary to make several terms more precise. In a shared memory system a memory
access is said to execute when the processor computes the address of the load
or store and instruction is issued to the memory system. A memory access is
then said to complete when it become visible to the processor that issued the
access. Finally, a memory access is said to perform when it becomes visible to
all the processors in the system. This terminology will be important in later
discussions using DVMC.

5.1 Uniprocessor Ordering

The first invariant that is checked by DVMC is the uniprocessor ordering in-
variant. This invariant ensures that all reads from a specific address will return
the values most recently written to that address by the same processor unless
another processor has written a different value in between. This invariant is
similar to the memory invariant in Argus with the exception that it does not
verify that address being read from or written to is indeed the correct address.
Note that the uniprocessor ordering invariant holds with respect to each address
separately.

17

5.2 Cache Coherence

The second invariant checked by DVMC is that of cache coherence. DVMC
requires that a specific type of cache coherence known as Single-Writer, Multiple
Reader (SWMR) cache coherence be employed. The purpose of this invariant is
to ensure that only a single processor is updating the value stored at a specific
address at a time. Again note that cache coherence is an invariant that is
applied to each address in the memory system separately. In conjunction with
the uniprocessor ordering invariant it should be observed that a total ordering
of all memory accesses to a single address can be specified.

5.3 Allowable Reordering

The last invariant checked by DVMC is that of allowable reordering. The al-
lowable reordering invariant ensures that all memory accesses obey the memory
consistency model. The memory consistency model specifies the possible order-
ings that can occur between accesses to different memory addresses. Recall that
all accesses to a single address can be ordered by cache coherence and unipro-
cessor ordering. The allowable reordering invariant checks that all accesses to
all memory locations obey an ordering that agrees with the memory consistency
model specified by the processor. The combination of all three invariants then
specify whether a total ordering of all memory accesses performed is correct.

6 Proving the Completeness of Argus with DVMC

The first step in proving the completeness of the Argus with DVMC check-
ing system is to define the system model for the chip multiprocessor. For the
purposes of this proof, it is assumed that the system consists of the following:

e N processors each with a Von Neumann architecture.

e A shared memory system composed of one main memory and N caches,
with each cache being associated with a single processor. The caches are
maintained by a SWMR cache coherence protocol. All addresses speci-
fied in the memory system are physical addresses. There are no virtual
addresses and therefore no TLB’s.

e An interconnect network of some form that connects all N processors.

It is important to realize that this is a very simple model of a chip multipro-
cessor. No assumptions are made about the nature of the memory consistency
model except that it has a SWMR cache coherence protocol. For the purposes
of this proof a simple model of hardware is employed to make the proof more
intuitive. The simplified model proposed here does not contain the hardware
necessary for supporting more relaxed memory consistency models (i.e. write
buffers), but this hardware could easily be incorporated into the model.

18

The idea behind this proof is to recognize that Argus and DVMC have each
already been proved to be correct and complete within the context of their own
system models. The problem then becomes demonstrating that the boundaries
of error detection coverage for both Argus and DVMC meet squarely in the
model of the chip multiprocessor defined previously. The key idea is that caches
can be used to define the interface between Argus and DVMC.

Before demonstrating that the interface between Argus and DVMC can be de-
fined using caches, it is first necessary to specify some important terminology.
To this point in the thesis, the concept of a memory access has not had a precise
definition. A memory access is now defined to be a read or write request for an
address that is issued explicitly to the processor’s cache. The concept of a value
being correct in a register or in memory has already been defined. However, it
is also necessary to define the correctness of a value a cache. Note that it is not
necessary to define that the address of a value in the cache is correct as this will
be handled by Argus’ memory checker. A value in a cache is said to be correct
with respect to a physical address A if the value is equivalent to the latest store
performed to the address A. It is important to recognize that this definition of
a correct cache value makes no assumption as to the correctness of the value
with respect to program execution.

6.1 Three Lemmas

In this section three lemmas are presented that will be used in the proof of com-
pleteness of the Argus with DVMC system. These lemmas deal with properties
involving the caches and the programs with which they are associated. Lemma
1 shows that correct execution of a program between memory accesses will lead
to correct memory accesses being issued to the cache. Lemma 2 shows that
SWMR cache coherence ensures that all values in every cache are correct at all
times. Finally, Lemma 3 takes the results of Lemmas 1 and 2 and uses them
to prove that correct memory accesses will always be performed given that the
initial conditions in Lemmas 1 and 2 hold.

Lemma 1. Correct execution of one program between memory accesses — cor-
rect memory accesses issued.

Proof: Assume that the execution up to the nth memory access is correct.
Therefore using the dataflow, control flow, and computation invariants of Argus,
it is known that the nth memory access will execute correctly (recall the formal
definition of executing a memory access). This implies that all of the fields in
the memory access instruction are correct and will be sent to the cache correctly.
All of the memory accesses issued to the processor’s cache will then be correct
given that the execution between memory accesses is correct. [J

Lemma 2. SWMR cache coherence — all values stored in a cache are correct
at all times.

19

Proof: The single writer multiple reader cache coherence protocol enforces
the policy that only one processor will ever write to an address at a time.
Therefore whenever a write occurs it will overwrite all other copies of that value
within the system. This then ensures that any new reads occurring after a
write will observe the most recently written value into that address. Since all
future readers now see the most recently written value to an address then all
future readers will see correct values in their caches. It is important to note that
once a value is correct within a cache it is protected by EDC and is therefore
maintained correctly.

Lemma 3. Correct memory accesses issued to a cache and correct cache values
at all times — correct memory accesses performed.

Proof. Tt is assumed that all of the memory accesses issued to the cache
are correct and that all of the values in the cache are correct at all times.
The Argus memory checker will then ensure that any accesses to the cache
will access the correct address in the cache and that the value returned will
be the correct value stored in the cache and therefore the memory access will
have committed correctly. However, it is yet to be seen that the nth memory
access will perform correctly with respect to all other memory accesses. It is
known that DVMC supports two other invariants: uniprocessor ordering and
allowable reordering. The uniprocessor ordering invariant ensures that the nth
memory access will perform correctly with respect to all other memory accesses
to the same address that were issued from the same processor. It is also known
from Lemma 2 that the nth memory access will perform correctly with respect
all other memory accesses to the same address that were not issued by the
same processor. Finally, the allowable reordering invariant ensures that the nth
memory access will perform correctly with respect to all other memory accesses
that are not to the same address as the nth memory access. The nth memory
access therefore performs correctly with respect to all other memory accesses.

6.2 Argus with DVMC Completeness

Having now developed all of the necessary building blocks, it is now possible to
give the proof of completeness.

Argus with DVMC Completeness Theorem. Argus with DVMC — com-
plete error detection coverage in chip multiprocessors with simple cores.

Proof: This is proved using induction on memory accesses. The first step is
to select a program P at random from the N programs executing on the CMP
and use induction on memory accesses issued to the cache.

Base Case - It is assumed that the initial state configuration of the processor
and its associated cache is correct. If necessary this can be verified by an ex-
ternal checksum. Using the dataflow, control flow, and computation invariants
that are verified by Argus, it is possible to guarantee that execution up to the

20

first memory access is correct.

Induction Case - It is assumed that the execution up to the nth memory

access is correct. It is then necessary to demonstrate the nth Memory access

1th

occurs correctly and that the execution up to the n+ INemory access OCCurs

correctly. It is already known that the execution up to the nth memory access
is correct, therefore it is possible to apply Lemma 1 to see that the pth memory
access is issued correctly. DVMC also ensures that SWMR cache coherence is
maintained, which by Lemma 2, ensures that the values in the caches are always
correct. Combining the results of Lemmas 1 and 2 and applying Lemma 3, it
is possible to see that the nth memory access is performed correctly. Using
the dataflow, control flow, and computation invariants of Argus it is possible to
guarantee that execution from the nth memory access to the n + 1th memory
access will also be correct. This then satisfies the inductive hypothesis that the

execution up to the n + 1th

memory access be correct.

It has been verified that the program P executes correctly on the CMP. Since
the choice of the program P was arbitrary, then the above logic can be applied
to all programs executing on the CMP. It has therefore been shown that Argus
with DVMC completely checks all programs executing on a chip multiprocessor
with simple cores. [J

7 Discussion

The completeness of Argus, the equivalence of Argus-1 to Argus, and the com-
pleteness of Argus with DVMC have now all been proved. However, it is still
interesting to consider what the actual results of implementing Argus or Argus
with DVMC on a simple core or a chip multiprocessor might be. While this
is not directly within the scope of this paper, it is work that has been done
in conjunction with the above proofs by both Meixner and the author and has
practical ramifications for actual implementations of Argus.

7.1 Experimental Verification

In order to determine the actual error coverage of the Argus-1 on an OR 1200
core [10] a gate level representation of the core with Argus was developed by
Meixner. This gate level representation was then downloaded onto an FPGA
board. Both hard and soft errors were then randomly injected into this core
while the core was executing a specialized benchmark designed to stress all
components in the core repeatedly over a short period of time. This specialized
benchmark was chosen to make sure that the errors could not be masked due
to errors occurring in unused or infrequently used components in the proces-
sor. 5000 different errors were injected into randomly chosen gates (there were
about 40,000) different gates. The error detection percentages can then be seen

21

in Table 1.

Error Unmasked, | Unmasked, Masked, Masked
Type Undetected | Detected | Undetected | Detected
Transient 0.76% 37.4% 38.2% 23.7%
Permanent 0.46% 37.6% 38.2% 23.7%

Table 1: Error Detection Coverage of Argus-1

Based on these results it is possible to see that Argus-1 does provide error
detection coverage that is extremely close to the ideal error detection coverage
of Argus. Indeed, of all of the unmasked errors, Argus-1 was able to detect
98.0% of the transients and 98.8% of the permanent errors. This shows that
even having a few holes in an implementation of Argus is not crippling and can
still provide extremely high error detection coverage.

7.2 Area Overhead

The area overhead for Argus was computed by the author and Meixner by ac-
tually laying out the core and the caches. The core was laid out using CAD
tools and the VI'VT 250 nm standard cell library [15]. The cache area over-
head was computed using Cacti [16]. Initially it was found that OR1200 core
unmodified used 6.59mm? and the Argus-1 core consumed an additional 16.6%
of area. However, when caches are included in this computation then the total
area overhead of Argus-1 drops to 10-11% as can be seen in Table 2.

’ \ OR1200 \ Argus-1 \ Overhead ‘

Core 6.58 7.67 16.6%
T-cache: 1-way 2.14 2.14 0%
2-way 2.42 2.42
D-cache: 1-way 2.14 2.24 4.9%
2-way 2.42 2.54 5.1%
Total: 1-way 10.86 12.05 10.9%
2-way 11.42 12.63 10.6%
2

Table 2: Area Overhead of Argus-1 in mm

These results show that very little area overhead is incurred in an actual im-
plementation of Argus-1. This is a promising result as it indicates that the
potential cost for implementing Argus is small. In addition to this a small area
overhead should be indicative of a small power overhead. While this result has
not yet been confirmed it is being investigated at this time.

7.3 Future Work

This work has shown that error detection can be completely performed on chip
multiprocessors with simple cores. DIVA presents a comprehensive checker of

22

more complex cores that Argus is not mapped onto as easily. Demonstrating
that DIVA, Argus, and DVMC could detect all errors in a heterogeneous mul-
ticore chip is a subject for future work. In addition to this, checking conversion
between virtual and physical address spaces is a subject of future work. This
would have to involve having some mechanism for checking the correctness of
TLB operation as well. Lastly, checking I/O and interrupts/exceptions is a
topic of ongoing work. Being able to prove that errors can be detected in these
components of the processor is still an open problem.

8 Conclusion

The proofs of completeness for both Argus and Argus with DVMC have demon-
strated the potential of invariant checkers to comprehensively detect all errors
in a simple core and within a mulicore respectively with minimal overhead.
While these checkers can help to ensure that rising error rates due to shrinking
transistors will never result in a correctness problem, the question of the per-
formance impact of rising error rates still has to be addressed. In addition to
this, the proofs in this thesis have left several holes open that could prove to be
difficult verify. It might ultimately be shown that these holes cannot reliably
be checked in any self contained way. Despite these future obstacles, the com-
pleteness of Argus and Argus with DVMC are significant results that go a long
way to ensuring the correctness of programs in the face of rising error rates.

Acknowledgments

I would like first and foremost to thank my advisor, Daniel Sorin, for all of the
guidance that he has given me over the past two years. His mentoring has truly
formed me into the researcher and person that I am today. I would also like
to thank Albert Meixner and Bogdan Romanescu for their help in all of my
endeavours and for allowing me to collaborate with them in their research. A
special thank you to all of my office mates for supporting me during the tough
times. To Jason Bosko for always sticking with me on my long and winding
engineering thought tangents. To Phil Gorman for never failing to be there
with a light hearted moment. I would be remiss if I did not take time to thank
my family for supporting me in all that I have done. Lastly, thank you to
Kamaal Patterson, for showing me that there are greater truths to be found
and experiences to enjoy.

References

[1] J.F. Ziegler et al., “IBM Experiments in Soft Fails in Computer Electronics
(1978-1994)” IBM Journal of Research and Development, vol. 40, Jan. 1996.

23

2]

J. Srinivasan et al., “The Impact of Technology Scaling on Lifetime Reli-
ability”, International Conference on Dependable Systems and Networsk,
June 2004.

T.M. Austin. “DIVA: A Reliable Submicron Microarchitecture Design”,
Proceedings of the 32nd International Symposium on Microarchitecture,
Nov. 1999.

T.M Austin. “DIVA: A Dynamic Approach to Microprocessor Verification”
Journal of Instruction Level Parallelism, May 2000.

E. Rotenberg. “AR-SMT: A Microarchitectural Approach to Fault Toler-
ance in Microprocessors” Proceedings of 29th International Symposium on
Fault Tolerant Computing, June 1999.

P. Kongetira et al., “Niagara: A 32-way Multithreaded SPARC Processor”
IEEE Micro 25(2), Mar./Apr. 2005.

A. Meixner, M. Bauer, D. Sorin “Argus: Low-Cost, Comprehensive Error
Detection in Simple Cores” Proceedings of the 40th International Sympo-
stum on Microarchitecture, Dec. 2007.

J. Hennessy and D. Patterson Computer Architecture: A Quantitative Ap-
proach Morgan Kaufmann, 3rd Edition, May 2002.

D. Kuck et al., “Measurements of Parallelism in Ordinary FORTRAN Pro-
grams”, Computer (27), Jan. 1974.

D. Lampert. OpenRISC 1200 IP Core Specification, Rev. 0.7.
http://www.opencores.org, Sept. 2001.

A. Meixner and D. Sorin. “Error Detection Using Dynamic Dataflow Ver-
ification”, Proceedings of the International Conference on Parallel Archi-
tectures and Compilation Techniques, Sept. 2007.

F. Sellers et. al., Error Detecting Logic for Digital Computers McGraw Hill
Book Company, 1968.

A. Meixner and D. Sorin. “Dynamic Verification of Memory Consistency
in Cache-Coherent Multithreaded Computer Architectures”, International
Conference on Dependable Systems and Networks, June 2006.

A. Meixner and D. Sorin “Dynamic Verification of Memory Consistency in
Cache-Coherent Multithreaded Computer Architectures”, Duke University,
Dept. of Electrical and Computer Engineering Technical Report #2006-1,
Apr. 2006.

J. Sulistyo et. al., “Developing Standard Cells for TSMC 0.25um Technol-
ogy under MOSIS DEEP rules.”, Technical Report VISC-2003-01, Dept. of
Electrical and Computer Engineering, Virginia Tech, Nov. 2003.

24

[16] N. Jouppi and S. Wilton. “An EnhancedAcces and Cycle Time Model for
On-Chip Caches”, DEC WRL Research Report 93/5, July 1994.

25

