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Abstract
Previous efforts to formally verify code written for GPUs have
focused solely on kernels written within the traditional data-parallel
GPU programming model. No previous work has considered the
higher performance, but more complex, warp-specialized kernels
based on producer-consumer named barriers available on current
hardware. In this work we present the first formal operational
semantics for named barriers and define what it means for a warp-
specialized kernel to be correct. We give algorithms for verifying
the correctness of warp-specialized kernels and prove that they are
both sound and complete for the most common class of warp-
specialized programs. We also present WEFT, a verification tool for
checking warp-specialized code. Using WEFT, we discover several
non-trivial bugs in production warp-specialized kernels.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; D.1.3 [Programming Techniques]: Parallel Programming

Keywords Verification; GPUs; data races; synchronization; dead-
lock; barrier recycling; warp specialization; named barriers

1. Introduction
GPUs are now an established general purpose computing platform
for applications that require significant computational resources
and memory bandwidth. While the potential gains of GPUs in per-
formance and energy efficiency are high, writing correct GPU pro-
grams is still a challenging task for many programmers. The in-
teraction of a complex GPU memory hierarchy, including different
on-chip software and hardware managed caches, coupled with the
large number of threads to consider, makes it easy to introduce data
races and other correctness bugs into GPU kernels.

There have been several previous attempts at writing tools ca-
pable of verifying the correctness of GPU kernels [5, 8, 11, 12, 18–
21]. While each of these tools has attacked the problem of verifying
GPU kernels in a different way, they have all assumed the standard
data-parallel GPU programming model supported by CUDA[22]
and OpenCL[15]. In this model, kernels commonly execute us-
ing a streaming paradigm: load data on-chip, perform a compu-
tation on the data, and write data back off-chip. To coordinate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI’15, June 13–17, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/2737924.2737962

the execution of these phases, a barrier is used to synchronize all
the threads in a threadblock(CUDA)/workgroup(OpenCL). While
a threadblock-wide barrier is sufficient for streaming data-parallel
kernels in which all threads perform roughly the same computation,
it is limiting for kernels in which threads within the same thread-
block perform different computations.

Recently, programming systems such as CudaDMA[6] and
Singe[7] have demonstrated the viability of warp specialization as
an alternative to the standard data-parallel programming model for
targeting GPUs. Warp-specialized kernels assign different compu-
tations to warps (groups of 32 threads) within the same threadblock
in order to achieve important performance goals (e.g. maximiz-
ing memory bandwidth in CudaDMA, or fitting extremely large
working sets on-chip in Singe). To perform synchronization be-
tween different warps, warp-specialized kernels use the producer-
consumer named barriers available in PTX[1] on NVIDIA GPUs.
Named barriers are not currently exposed in the CUDA program-
ming model and are only available via the use of inline PTX as-
sembly code. Named barriers are implemented directly in hard-
ware and support a richer set of synchronization patterns than
can be achieved with the standard threadblock-wide barrier used
by CUDA and OpenCL. Specifically, named barriers allow warp-
specialized kernels to encode producer-consumer relationships be-
tween arbitrary subsets of warps in a threadblock. Importantly, pro-
ducers do not block on a named barrier, and can continue executing
after arriving on a named barrier.

While named barriers allow warp-specialized kernels to achieve
up to 4X performance improvements in some cases over optimized
data-parallel kernels[6, 7], they have considerably more complex
semantics which are challenging to verify. Specifically, there are
three important properties to check for warp-specialized kernels.

• Deadlock Freedom: checking that the use of named barriers
does not result in deadlocks.
• Safe Barrier Recycling: Named barriers are a limited physical

resource and it is important to check that IDs of named barriers
are properly re-used.
• Race Freedom: checking that shared memory accesses synchro-

nized by named barriers are race free.

To the best of our knowledge, no current GPU verification tools
are capable of checking code containing named barriers. In this
work, we present the necessary theoretical framework, algorithms,
and implementation strategy for constructing a verifier capable of
efficiently checking the above correctness criteria for production
warp-specialized code.

Using our techniques, we develop WEFT1, a verifier which is
sound, complete, and efficient. Soundness ensures that developers
never have to write tests to check the three properties mentioned

1 Available at https://github.com/lightsighter/Weft



previously; in fact, WEFT has discovered latent bugs that have per-
sisted for many years. Completeness guarantees that all violations
reported by WEFT are actual bugs; there are no false positives. Fi-
nally, WEFT is efficient enough to be practical for verifying real
codes; WEFT runs on complex, warp-specialized kernels consist-
ing of thousands of lines of code and with billions of potential races
within a few minutes.

The rest of this paper is organized as follows. In Section 2, we
provide the necessary background for understanding named barri-
ers and the construction of warp-specialized kernels. We also pro-
vide a concrete example of an interesting warp-specialized kernel
from a real application that demonstrates the need for formal verifi-
cation. Each of the remaining sections describe one of our primary
technical contributions.

• We introduce a core language for warp-specialized kernels that
contain named barriers. We give a formal operational semantics
for this language and show how it models the necessary proper-
ties for checking correctness of warp-specialized kernels (Sec-
tion 3). These semantics are a proposed formalization of the En-
glish description of named barriers in the PTX manual [1] and
can be re-used by future tools that attempt to verify programs
that use named barriers.
• We formally define the correctness properties for warp-specialized

kernels and provide algorithms for verifying these properties.
Our algorithms (Section 4) are sound (do not miss any errors),
complete (all reported errors are true errors), and efficient.
• We describe our implementation of WEFT, a verification tool

for checking warp-specialized code containing named barriers.
We describe the important optimizations that permit WEFT to
scale to kernels that execute hundreds of millions of program
statements. Using WEFT we check the correctness of all warp-
specialized kernels of which we are aware and discover several
non-trivial bugs (Section 5).

Section 6 covers related work and Section 7 concludes.

2. Background and Motivation
In this section we briefly cover the necessary details for understand-
ing GPU programming (Section 2.1) and warp specialization (Sec-
tion 2.2). We then introduce a motivating warp-specialized kernel
that illustrates the need for verification of code using named barri-
ers (Section 2.3).

2.1 GPU Architecture and Programming
While there are several different frameworks currently available
for programming GPUs, they all provide variations on the same
data-parallel programming model. For the rest of this work, we use
CUDA as a proxy for this model as it is the only interface that
supports the named barrier primitives necessary for constructing
warp-specialized kernels.

When a CUDA kernel is launched on a GPU, a collection of
threadblocks or cooperative thread arrays (CTAs for the remain-
der of this paper) is created to execute the program. Each CTA is
composed of up to 1024 threads. The hardware inside of the GPU
dynamically assigns CTAs to one of the streaming multiprocessors
(SMs) inside of the GPU. To communicate between threads within
the CTA, CUDA provides an on-chip software-managed shared
memory visible to all the threads within the same CTA. To coordi-
nate access to shared memory, CUDA supports the syncthreads
primitive, which performs a CTA-wide blocking barrier. Synchro-
nizing between threads within the same CTA is the only synchro-
nization supported by CUDA because threads within the same CTA
are the only ones guaranteed to be executing concurrently.

Named Barrier 0

Named Barrier 1

Consumer WarpProducer Warp

bar.arrive
(signal begin)

bar.sync
(wait until ready)

bar.sync
(wait until begin)

bar.arrive
(signal ready)

Figure 1. Producer-consumer named barriers example.

While logically CTAs represent a flat collection of threads, in
practice the threads of a CTA are organized into groups of 32, re-
ferred to as warps. The hardware within an SM makes scheduling
decisions at the granularity of warps. When a warp is scheduled,
all threads within the warp execute the same instruction. In the
case of a branch instruction, the SM first executes the warp for the
not taken branch with the threads that took the branch masked off.
The SM then executes the taken branch with the complementary
set of threads in the warp masked off. The resulting serialized exe-
cution of different branches within a warp is referred to as branch
divergence and is a common source of performance degradation.
The crucial insight for enabling warp-specialized programs is that
there is no penalty if threads in different warps diverge. As long as
all threads within a warp continue to execute the same instruction
stream, there is no performance degradation.

2.2 Warp Specialization and Named Barriers
A warp-specialized kernel is one in which individual warps are
assigned different computations via control divergence contingent
upon warp IDs. There are a number of advantages to specializing
warps. For example, CudaDMA[6] specializes warps into compute
and DMA warps to optimize the loading of data into shared mem-
ory. By separating memory operations from arithmetic, both in-
struction streams can be better optimized by the CUDA compiler.
Alternatively, the Singe compiler[7] specializes warps to handle the
mapping of fine-grained static dataflow graphs onto CTAs. Con-
sequently, Singe can leverage task parallelism on GPUs in the ab-
sence of significant data-parallelism, and fit very large working sets
into on-chip memories by blocking data for the GPU register file.

Similar to data-parallel CUDA kernels, warp-specialized ker-
nels communicate through shared memory. However, unlike data-
parallel kernels, communication in warp-specialized kernels is
asymmetric, with one or more warps acting as producers, and one
or more other warps acting as consumers. In CudaDMA, DMA
warps act as producers while compute warps act as consumers. For
Singe kernels, dataflow edges between operations assigned to dif-
ferent warps define producer-consumer relationships between pairs
of warps. To handle producer-consumer synchronization, NVIDIA
GPUs support hardware named barriers in PTX[1]. PTX provides
two instructions for arriving at a named barrier: sync and arrive.
A sync instruction causes the threads in a warp arriving at the bar-
rier to block until the barrier completes. Alternatively, an arrive
instruction allows a warp to register arrival at a barrier and immedi-
ately continue executing without blocking. Both sync and arrive
instructions require the total number of threads participating in the
barrier to be specified. Importantly, the number of participants can
be less than the total number of threads in the CTA.

Using both the sync and arrive instructions (via inline PTX
assembly), CUDA applications can encode producer-consumer
synchronization. Figure 1 demonstrates the usage of two named
barriers to encode a producer-consumer relationship between a
pair of warps. A producer warp initially blocks on named barrier
0 using a sync instruction to wait until it is safe to write data into
shared memory. At some point the consumer warp signals that it is



1 global void launch bounds (64,1) example deadlock(void) {
2 assert(warpSize == 32);
3 assert(blockDim.x == 64);
4 int warp id = threadIdx.x / 32;
5 if (warp id == 0) {
6 // bar.sync (barrier name), (participants);
7 asm volatile(”bar.sync 0, 64;”);
8 asm volatile(”bar.arrive 1, 64;”);
9 } else {

10 asm volatile(”bar.sync 1, 64;”);
11 asm volatile(”bar.arrive 0, 64;”);
12 }
13 }

Listing 1. Example of deadlock using named barriers.

safe to write by performing an arrive instruction on named barrier
0. Since it issued a non-blocking arrive instruction, the consumer
warp can perform additional work while waiting for the producer
warp to generate the data. Eventually, the consumer warp blocks
on named barrier 1 waiting for the data to be ready. The producer
warp signals that the data is ready by arriving on named barrier 1
with a non-blocking arrive so that it can continue executing.

Each SM on current NVIDIA GPUs contains 16 physical named
barriers numbered 0 through 15. Once a named barrier completes,
it is immediately re-initialized so that it can be used again. We
refer to each use of a named barrier as a generation of the named
barrier. Different generations of a named barrier can have different
numbers of participants.

The use of named barriers can create many interesting failure
modes for kernels that will not normally arise within the standard
CUDA programming model. For example, named barriers intro-
duce the possibility of deadlock. Listing 1 shows a simple warp-
specialized kernel which deadlocks for all CTAs. Each of the two
warps in this example block waiting on the other warp to arrive
on a different named barrier, resulting in a cyclic synchronization
dependence. It is important to note that deadlock is a problem spe-
cific to warp-specialized code. It is impossible to create such circu-
lar waits using the traditional syncthreads primitive because all
invocations map to named barrier 0.2

2.3 Motivating Kernel
To motivate the need for verification of warp-specialized kernels,
we give an example from the Heptane chemistry kernel emitted by
the Singe DSL compiler[7]. This kernel is currently deployed in
a production version of the combustion simulation S3D[9], which
is being used for doing advanced energy research on Titan, the
number two supercomputer in the world[26]. Figure 2 illustrates
how part of the computation represented as a static dataflow graph
is mapped onto four warps. All computations (nodes in the dataflow
graph) represent warp-wide data-parallel operations consisting of
straight-line code. Where dataflow edges cross warp boundaries,
data must be communicated through shared memory. All cross-
warp dataflow edges (labeled and shown in red) are assigned a
named barrier to use when synchronizing access to shared memory
for communicating data.

There are two important properties to be observed regarding this
example kernel. First, notice the re-use of named barrier 2 in Fig-
ure 2. To avoid conflicting arrivals at named barrier 2 from partic-
ipants of different generations, a happens-before relationship[16]
must be established between the completion of the previous gener-
ation of a named barrier and all participants of the next generation.
From Figure 2, we know barrier 2 completes before operation D

2 Using syncthreads inside of warp-divergent conditional statements is
illegal in the CUDA programming model and has undefined semantics, but
in practice can also result in deadlock on some architectures.

Warp 0 Warp 1 Warp 2 Warp 3

A

B C D

E

F G

H I J

Named Barrier: 2
Warp 0: arrive
Warp 3: sync

Named Barrier: 3
Warp 1: sync
Warp 2: arrive

Named Barrier: 2
Warp 1: sync
Warp 2: arrive

Named Barrier: 0
Warp 0: arrive
Warp 1: sync

Named Barrier: 1
Warp 2: sync
Warp 3: arrive

Figure 2. Motivating warp specialization example.

is run. The happens-before relationships established by the paths
D → E → F → I and D → E → G, using named barriers
1 and 3, ensure the participating warps in the next generation of
barrier 2 (warps 1 and 2) both have a happens-before relationship
with the previous generation of barrier 2; therefore barrier 2 can be
safely recycled. Note that the path A → B → F → I is insuf-
ficient for establishing a happens-before relationship because warp
0 performs a non-blocking arrive on the first generation of named
barrier 2 and therefore cannot guarantee that the barrier actually
completed. For the Heptane kernel to run correctly, all barriers must
successfully execute and be properly re-used. Informally, we refer
to a kernel that meets these criteria as well-synchronized (we give
a formal definition of well-synchronized in Section 4). In the case
of the Heptane chemistry kernel, which consists of more than 10K
lines of CUDA code, checking for the well-synchronized property
by hand is impractical.

The second important property of the Singe kernel is that the
synchronization pattern is completely static. While there is sig-
nificant parallelism in the kernel, the use of named barriers con-
strains the synchronization so that it is both deterministic and
known at compile-time. Furthermore, each thread executes straight-
line code with no dynamic branches or loops. These properties
are important as the undecidability result of [25] shows that it is
impossible to obtain complete solutions in the presence of arbi-
trary control flow and synchronization. In practice, we found that
all warp-specialized kernels we considered consisted entirely of
code with only statically-analyzable branches, loops, and synchro-
nization patterns. While this may seem unusual for general pur-
pose code, it is common for many GPU kernels due to the high
cost of dynamic branching associated with the in-order instruc-
tion pipelines of current GPUs.3 We also found that all accesses
to global memory and shared memory could be completely under-
stood statically as functions of CTA and thread ID. Consequently,
the operational semantics we present in Section 3 are for kernels
with statically analyzable control flow and data flow, which is suf-
ficient for handling all of the warp-specialized code known to us.

3. Operational Semantics
Before describing our formal language, we first scope the do-
main of our problem. We are interested in formally checking
for deadlock-freedom, proper named barrier recycling, and shared
memory data race freedom within individual CTAs. We make no
claim of handling inter-CTA synchronization4 used by persistent
uber-kernels such as OptiX[24]. We also do not consider software-

3 It is also simple to extend our results to programs with loops and dynamic
branches if these constructs do not contain synchronization operations.
4 Which is not officially supported by the CUDA programming model.



level intra-CTA synchronization which can be constructed with
atomic primitives (but are at least an order of magnitude slower
than named barriers). We view the verification of atomics as an
orthogonal problem to the verification of named barrier usage. We
rely on a symmetry assumption that all CTAs execute the same pro-
gram (albeit with different input data) and therefore we only need
to model and verify a single CTA to establish correctness. The val-
idation is limited to the accesses to a GPU’s shared memory, which
has a well-defined semantics due to the software-managed nature of
the cache. We do not attempt to reason about data passed between
threads through global memory, both because of the weak seman-
tics [3] and because global memory is not used for communication
in any of the warp-specialized kernels of which we are aware.

3.1 Syntax
A GPU program has an arbitrary number of non-interfering CTAs.
Each CTA has N (typically between 32 and 1024) threads that can
synchronize for access to shared memory. We denote a thread by P
and a CTA by T . We use P1 ||P2 || . . . || PN to denote a CTA
with threads P1, P2, . . . , PN . Variables in shared memory loca-
tions are denoted by g. For simplicity, we assume that all vari-
ables occupy 64 bits. We consider abstract thread programs for
each thread, where everything has been abstracted away except the
instructions required to reason about synchronization and shared
memory accesses. Each thread program has a separate thread iden-
tifier denoted by id. We use i to range over thread identifiers. The
hardware provides B (typically 16) named barriers and b refers to
a specific barrier name.

A thread program has the following grammar:

P ::= return | c;P
c ::= read g | write g

| arrive b n | sync b n
A thread program is a sequence of commands (straight line code).
In each command c a thread can either read/write from a shared
memory location or perform a synchronization operation. Block-
ing synchronization operations are performed by sync and non-
blocking operations by arrive. The read and write commands are
treated as no-ops in this section. They are only useful for detecting
data races and play no role in the semantics of named barriers. For
synchronization commands (sync and arrive), the first argument
b represents the name (ID) of a named barrier, and the second argu-
ment n represents the expected number of threads to register at this
generation of the barrier. Successive commands are separated by a
semicolon. A thread terminates by executing a return.

In this syntax, the standard barrier syncthreads is expressed
as sync 0 N : a sync across all threads in a CTA on barrier 0.
Program points are defined in the standard manner: before and
after each command c. Each program point is uniquely identified
by the command just before it. We say that a program point η and
command cη correspond if η is the program point just after cη . The
first program point of thread i is denoted by ηiI and the last by ηiF .
We omit the superscripts when the thread is clear from the context.

Our semantics does not assume nor require warp-synchronous
execution. Warp-synchronous execution is the assumption that all
threads within a warp will execute in lock-step. This assumption
has traditionally held for past GPU architectures, but it is not stan-
dardized and may be invalidated by future designs. We can easily
model warp-synchronous execution in our language by inserting
a sync command across all threads in a warp after every original
command in a program, thereby ensuring that the threads within a
warp execute in lockstep.

3.2 State
We first define a state s of a CTA. It consists of the following:

1. An enabled map E that maps thread identifiers to booleans
signifying whether the thread is enabled or not. Threads are
disabled when they block on a barrier.

2. A barrier map B that maps barrier names to a triple consisting
of a list I of threads that have synced at the barrier, a list A of
threads that have arrived at the barrier, and the thread count,
describing the number of threads the barrier is expecting to
register if it is configured.

The thread count is configured by the first thread that reaches
a barrier, hence the need for all synchronization commands to
specify the expected number of participants. The thread count of
unconfigured barriers is denoted by ⊥. An empty list of thread
identifiers is denoted by [] and “::” adds a thread to a list. The
number of elements in a list L is denoted by |L|.

For a map A, we use A[x/y] to denote the map that agrees
with A on all inputs except y and maps y to x. Similarly, A[x/Y ]
denotes a map that agrees withA on all inputs that are not in Y and
maps all y ∈ Y to x. The function ite(e1, e2, e3) stands for “ if e1
then e2 else e3”.

The initial state I has ∀i.E(i) = true and ∀b.B(b) =
([], [],⊥). Plainly stated: all threads are enabled and ready to ex-
ecute, no thread has registered at any barrier, and all barriers are
unconfigured. We use done to denote a CTA with no more com-
mands to execute.

3.3 Semantics
We describe the small step operational semantics of a CTA T with
threads P1, . . . , PN executing in parallel. Recall that a state s has
two components E and B. The rules have the following form:

E ,B, T  E ′,B′, T ′

E ,B, i, P  E ′,B′, i, P ′

For the two kinds of rules, a CTA/thread program executing in
some state takes a single step, which results in a new CTA/thread
program and a new state. Here i denotes the thread ID of the thread
program (equivalent to threadIdx.x for one dimensional CTAs,
which are common for warp-specialized kernels). We now discuss
the operational semantics rules for each of the commands starting
with the execution of a CTA.

∀b.
(
B(b) = ([], [],⊥) ∨

(
B(b) = (I,A, n) ∧ |I|+ |A| < n

))
E ,B, i, Pi  E ′,B′, i, P ′i

E ,B, P1|| . . . ||Pi|| . . . ||PN  E ′,B′, P1|| . . . ||P ′i || . . . ||PN

The first antecedent says that for all barriers b, either b is uncon-
figured or needs to register more threads. In this situation, we non-
deterministically choose a thread in the CTA and execute it for one
step. If we have N thread programs executing concurrently, any
one of these can make an evaluation step from Pi to P ′i with some
side-effects on the state.

Next, if some barrier has registered the required number of
threads, then wake up all the threads blocked at the barrier and
recycle the barrier.

B(b) = (I,A, n) |I|+ |A| = n
T = P1 || . . . || PN ∀i.Pi = ite(i ∈ I, sync b n;P ′i , P

′
i )

T ′ = P ′1 || . . . || P ′N E ′ = E [true/I]

E ,B, T  E ′,B[([], [],⊥)/b], T ′

If the correct number of threads (n) have registered at b, then enable
all threads that were blocked on b (contained in I), change b to an
unconfigured state, and update the control of all threads in I. This
rule recycles a barrier by returning it to an unconfigured state.



The execution terminates when all threads execute a return.

E ,B, return || . . . || return E ,B, done
The hardware does not care about the state of the barriers when the
CTA exits as the barriers are reset before starting a new CTA.

The first synchronization operation configures the barrier and
determines the number of threads required.

B(b) = ([], [],⊥) B′ = B[([], [] :: id , n)/b]

E ,B, id , arrive b n; c E ,B′, id , c
The arriving thread configures the barrier with the thread count (n)
and gets added to the list of arrives. Programs with an invalid thread
count (more than the maximum threads permitted in a CTA5) can
be rejected by a preprocessing phase before execution begins.

If the first thread to register with a barrier is a sync, the seman-
tics are similar to arrive. The thread updates the enabled map and
is added to the list of blocked threads.

E(id) = true E ′ = E [false/id ]
B(b) = ([], [],⊥) B′ = B[([] :: id , [], n)/b]

E ,B, id , sync b n; c E ′,B′, id , sync b n; c

On executing a non-blocking arrive at the barrier the control and
the barrier map are updated.

B(b) = (I,A, n) 0 < |I|+ |A| < n

E ,B, id , arrive b n; c E ,B[(I,A :: id , n)/b], id , c

On reaching a sync, the operation is slightly different from
arrive: the thread is disabled and gets added to the list of blocked
threads. The control remains unchanged.

E(id) = true E ′ = E [false/id ] B(b) = (I,A, n)
B′ = B[(I :: id ,A, n)/b] 0 < |I|+ |A| < n

E ,B, id , sync b n; c E ′,B′, id , sync b n; c

Note that for each generation of a named barrier, the expected
number of participants must match for each thread program that
registers with the named barrier.

If too many threads reach a barrier then transition to the error
state err:

E(id) = true B(b) = (I,A, n) |I|+ |A| = n

E ,B, id , sync b n; c err, id , sync b n; c

When the barrier has already registered the number of threads it
was supposed to register then any subsequent attempts to register
causes the execution to go to the error state. Also, if there is a
mismatch on thread count then transition to the error state.

E(id) = true B(b) = (I,A, n) n 6= m

E ,B, id , sync b m; c err, id , sync b m; c

The error productions for arrive (not shown) are identical.
Finally, if any thread produces an error then the execution of the

CTA terminates in an error state err.
E ,B, i, Pi  err, i, Pi

E ,B, P1|| . . . ||Pi|| . . . ||PN  err, P1|| . . . ||Pi|| . . . ||PN
These error productions ensure that an execution either reaches
done, goes to err, or deadlocks. No other outcome is possible.

4. Algorithm
Our approach to verifying the correctness of a CTA involves guess-
ing happens-before relationships from a concrete execution, per-
forming a static analysis to ensure that the guessed relationships

5 Technically, our semantics also do not permit CTAs with only 1 thread,
but this class of programs trivially satisfy our correctness criteria.

hold for all possible executions, and using the relationships to prove
the important correctness properties. We begin by providing formal
definitions for the correctness properties that we intend to verify.

4.1 Preliminaries
Recall that a state s has two components E and B. We use (s, T )
to abbreviate E ,B, T . A configuration C is a pair of a state s and a
CTA T . First we need to define execution traces.

Definition 1. A partial trace or a subtrace is a sequence of con-
figurations (s0, T0), . . . , (sn, Tn) such that for any two successive
configurations we have (sj , Tj) (sj+1, Tj+1).

A complete trace ends in either done, err, or a deadlock.

Definition 2. A (complete) trace τ starting from a configuration
(s, T ) is a subtrace (s, T ), . . . , (s′, done), or (s, T ), . . . , (err, T ′),
or (s, T ), . . . , (s′, T ′) where T ′ 6= done and no rule is applicable
(deadlock).

As is standard, C  C′ denotes that C evaluates to C′ in one step;
C  ∗ C′ denotes that C evaluates to C′ in zero or more steps, and
C  m C′ denotes that C evaluates to C′ in m steps.

We also need a notion of time t which says at what step a
command is executed in a trace. Time is needed to reason about the
order in which commands are executed. If η is the program point
just after the command cη then we define a quantity t(τ, η) which
provides the step at which cη is executed in the trace τ .

Definition 3. Time t(τ, ηi) = n if τ has a prefix (s, T )  n−1

(s1, P
(1)
1 || . . . ||P

(1)
i || . . . ||P

(1)
N ) (s2, P

(2)
1 || . . . ||P

(2)
i || . . . ||P

(2)
N )

and P (1)
i = cηi ;P

(2)
i .

This definition ensures that for read, write, and arrive, the time
t(τ, ·) provides the execution step when these are executed in τ .
For sync it provides the step when the corresponding barrier is
recycled. Using time, we can define a happens-before relationship.

Definition 4. For a configuration (s, T ), a happens-before relation
R is sound and precise if for all pairs of commands (cη1 , cη2) we
have R(cη1 , cη2) iff for all traces τ starting from (s, T ) we have
t(τ, η1) ≤ t(τ, η2).

This happens-before relation is slightly non-standard: It includes
the commands that execute simultaneously (note the≤). For exam-
ple, all sync commands that synchronize together are included in
the happens-before relation R.

To define well synchronization, we need to define generations.
For a trace τ , Gen(τ) maps a synchronization command to a
generation ID observed in the trace τ . For example, a generation
ID of 2 for a command sync 0 n indicates that this command was
used to register on barrier 0 after this barrier has been recycled once
previously. The generation ID of unexecuted commands is set to 0.

Definition 5. Gen(τ)(cη) = n if t(τ, η) = m, cη is an operation
on barrier b, and the first m steps of τ contain n recyclings of
barrier b.

CTAs with the same generation mapping for all traces are called
well-synchronized.

Definition 6. A CTA T is well-synchronized if for any two traces
τ1 and τ2 that start from (I, T ), for all synchronization commands
c, we have Gen(τ1)(c) = Gen(τ2)(c) 6= 0.

This definition needs to be suitably generalized for arbitrary start-
ing states.

Definition 7. A configuration (s, T ) is well-synchronized if for any
two traces τ1 and τ2 that start from (s, T ), for all synchronization
commands c, we have Gen(τ1)(c) = Gen(τ2)(c) 6= 0.



1 asm volatile(”bar.sync 0, 64;”);
2 if (warp id == 0) {
3 g[lane id] = w;
4 asm volatile(”bar.arrive 1, 64;”);
5 } else {
6 asm volatile(”bar.sync 1, 64;”);
7 x = g[lane id];
8 }
9 asm volatile(”bar.sync 0, 64;”);

10 if (warp id == 0) {
11 asm volatile(”bar.sync 1, 64;”);
12 y = g[lane id];
13 } else {
14 g[lane id] = z;
15 asm volatile(”bar.arrive 1, 64;”);
16 }

Listing 2. CUDA snippet for the working example.

P Q
1 sync 0 64; (1) 1 sync 0 64; (1)
2 write g_0; 2 sync 1 64; (1)
3 arrive 1 64; (1) 3 read g_0;
4 sync 0 64; (2) 4 sync 0 64; (2)
5 sync 1 64; (2) 5 write g_0;
6 read g_0 6 arrive 1 64 (2)
7 return 7 return

Figure 3. Thread programs generated from Listing 2; P has thread
ID 0 and Q has 32.

Note that the non-zero check ensures that no trace of a well-
synchronized configuration can deadlock or go to an error. There-
fore a check for well synchronization subsumes both safe barrier
recycling and deadlock freedom. It also ensures that the synchro-
nization behavior is deterministic: in all traces the same commands
synchronize together.

Next we define race freedom.

Definition 8. A well-synchronized CTA T is data race free if for
all traces τ1 and τ2 starting from (I, T ), if t(τ1, η1) < t(τ1, η2),
t(τ2, η1) > t(τ2, η2), and cη1 and cη2 access the same shared
variable g, then cη1 and cη2 are both read.

If two commands accessing the same shared variable g do not have
a happens-before relationship between them, then they must both
be reads, otherwise there is a data race.

Finally, we have the standard definitions of soundness and com-
pleteness.

Definition 9. An algorithm D is sound for property Ψ if for all
CTA T , D(T )⇒ Ψ(T ).

Definition 10. An algorithmD is complete for property Ψ if for all
CTA T , ¬D(T )⇒ ¬Ψ(T ).

4.2 Property Checking
We describe our algorithms for checking if a kernel is well-
synchronized and data race free using the example in Listing 2. The
listing shows a CUDA program snippet for a kernel with 2 warps
(64 threads). Figure 3 shows the thread programs associated with
thread ID 0 and thread ID 32, denoted by P and Q respectively.
(We discuss the translation from a CUDA program to a thread pro-
gram in Section 5.1.) Both P and Q have the same lane id, zero,
given by threadID%32. In this example, only the threads with
the same lane id can have data races, therefore we focus on P
and Q; the execution of threads in other lanes mirrors these two
threads. If j is a statically known constant, then each location g[j]
in shared memory is treated as a separate variable g j in the thread
programs. In this case j equals lane id.

WELLSYNC(T : CTA, τ : Trace) : Bool
Return true iff T is well-synchronized.

1: assume τ ≡ (I, T ), . . . , (F, done)
2: G := Gen(τ)
3: R := ∅
4: for each (c1; c2) ∈ T do
5: R := R ∪ {(c1, c2)}
6: end for
7: for each c1 ≡ arrive b n do
8: for each c2 ≡ sync b n and G(c1) = G(c2) do
9: R := R ∪ {(c1, c2)}

10: end for
11: end for
12: for each c1 ≡ sync b n do
13: for each c2 ≡ sync b n and G(c1) = G(c2) do
14: R := R ∪ {(c1, c2), (c2, c1)}
15: end for
16: end for
17: R := Transitive closure of R
18: for each c1 ≡ sync b n and G(c1) = k and each c2 with

barrier b and G(c2) = k + 1 and c3; c2 ∈ T do
19: if (c1, c3) /∈ R then
20: return false
21: end if
22: end for
23: return true

Figure 4. The algorithm for checking well synchronization.

sync 0 write arrive 1 sync 0 sync 1 read

P: Thread 0

Q: Thread 32

sync 0 sync 1 read sync 0 write arrive 1

Figure 5. A path between two commands of P and Q signifies a
happens-before relationship.

We statically simulate one possible execution of the CTA to gen-
erate a trace τ . If this execution deadlocks or throws an error then
we have found a violation of the well synchronization property.
Otherwise, we have a trace τ that reaches done. For Figure 3, we
can have the following trace. Suppose P and Q first synchronize
on barrier 0, then P writes to g, registers on barrier 1 and blocks
on barrier 0. Next, Q blocks on barrier 1 which is recycled, reads
from g, recycles barrier 0, writes to g and registers on barrier 1. The
unblocked thread P now recycles barrier 1 and reads g.

From this trace τ we can extract Gen(τ) which assigns non-
zero generations to all synchronization commands. The generation
IDs are shown in parentheses with the synchronization commands
of the thread programs in Figure 3. For example, the first command
of all threads synchronize on barrier 0 creating the first generation
of barrier 0. Then the fourth command of all threads synchronize
again on barrier 0 and this time the assigned generation ID is 2.

To ensure well synchronization, we statically check that all
traces assign the same generations to commands as Gen(τ). Our
algorithm is shown in Figure 4. We first use Gen(τ) to construct
a static happens-before relation R. The relation starts empty (line
3). We add successive commands to R. For GPUs the successive
commands are guaranteed to execute in order. Figure 5 shows a
graphical representation of the relation R for P and Q: the edges
represent the tuples in R. The graph starts with no edges and
lines 4-6 add the solid edges, corresponding to instruction ordering
relations within individual threads.



Next, we add the edges corresponding to the inter-thread
happens-before relations. If c1 is an arrive and c2 is a sync
such that the two commands are in the same generation, then add
(c1, c2) toR. Now, for c1 and c2 corresponding to sync in the same
generation, add (c1, c2) and (c2, c1) to R. Lines 7 to 16 perform
these steps and result in the dashed edges in Figure 5. There are
cycles in this figure because the happens-before relation includes
the commands that execute simultaneously (e.g. sync on the same
barrier). Finally, we compute the transitive closure of R (line 17)
thus yielding the full static happens-before relation. There is a path
between c1 and c2 in Figure 5 iff (c1, c2) ∈ R.

After constructing the happens-before relation for all program
commands, lines 18 to 23 check that there exists happens-before
relationships between successive generations of the same barrier.
For example, for Figure 3 we need to establish happens-before
relationships between line 1 of P and line 4 of Q, between line 2
of Q and line 5 of P , etc. We can observe that for all checks made
for commands (c1, c3) on line 19, there is a path between the two
commands in Figure 5. On line 19, we check for (c1, c3) instead of
(c1, c2) because we need to check that the program point just before
c2 happens after c1. Intuitively, we have shown that successive
generations are separated by a happens-before relationship and
therefore the CTA is well synchronized. We now establish this
formally. Our main result is the following:

Lemma 1. For well-synchronized configurations the static happens-
before relation as constructed in Figure 4 is sound and precise.

The soundness of R is direct: all tuples added to R are sound be-
cause there is no out-of-order execution of commands within indi-
vidual thread programs and because the well synchronization prop-
erty imposes barrier generations in all traces. The precise part re-
quires an induction on the size of the programs and the observation
that the tuples in R are the only restrictions on the ordering in the
executions imposed by the semantics.

Ideally, we could claim that if the algorithm in Figure 4 suc-
ceeds, then R ensures that Gen(τ) is maintained in all executions
and the kernel is well-synchronized. Unfortunately, this reasoning
is circular because only well-synchronized programs are guaran-
teed to have a sound R and here we are using R to ensure that gen-
erations are ordered. Fortunately, we have the following soundness
result based on a different proof approach.

Theorem 1. If τ ≡ (I, T )  ∗ (F, done) and WELLSYNC(T ,τ )
returns true then T is well-synchronized.

We induct on suffixes of the given execution that reaches done. In
the base case, the program done is vacuously well-synchronized.
In the induction step, we have a well-synchronized configuration
(s1, T1) and suppose in the given trace (s2, T2)  (s1, T1). Then
the checks in WELLSYNC ensure that the new generation intro-
duced in going from T1 to T2 has a happens-before relationship
with generations in T1 and (s2, T2) is well-synchronized.

Completeness of WELLSYNC follows because well-synchronized
programs have a precise R. The time complexity of WELLSYNC is
dominated by the cost of computing the transitive closure, which
for a CTA with n commands can be O(n3) in the worst case. In
Section 5 we describe the essential optimizations required for effi-
ciently computing the transitive closure in practice.

If we succeed in proving that T is well-synchronized, then
we have proven that all executions of T are deadlock free and
recycle named barriers safely. Moreover, as a side-effect of this
procedure, Lemma 1 provides a sound and precise static happens-
before relation R. Once we have this relation, obtaining a sound
and complete algorithm for checking data races is direct. For two
commands c1 and c2 that are accessing the same shared memory
location with at least one write, we report a race if (c1, c2) /∈ R

and (c2, c1) /∈ R. For Figure 3, we need to check that there are
happens-before relationships between the write in P and the write
inQ, between the write in P and the read inQ and vice versa. From
Figure 5, we observe that there is a path between any two accesses
to the shared memory and therefore programs P and Q in Figure 3
are race-free.

5. Verification using WEFT

We now describe WEFT6, our verification tool that uses the al-
gorithm developed in Section 4 to verify the correctness of real
warp-specialized kernels. We first describe our implementation of
WEFT and then cover the results of using WEFT to verify 26 warp-
specialized kernels that use the CudaDMA library or were emitted
by the Singe compiler.

5.1 Emulation of GPU Programs in WEFT

WEFT takes as input the PTX assembly for a GPU program and
begins by translating the program into the formal language speci-
fied in Section 3. WEFT performs this translation by emulating one
CTA (usually the first CTA in a kernel) until it terminates, dead-
locks, or encounters an error. To perform the emulation, WEFT ini-
tializes basic registers such as the CTA ID and thread IDs, but as-
sumes nothing about the input arguments passed to the kernel. All
threads in the CTA are emulated concurrently so that WEFT can
accurately model blocking on named barriers. WEFT will usually
continue emulating an individual thread until it blocks on a named
barrier, and then resumes the thread after the barrier has completed.

In addition to the normal emulation mode, WEFT also supports
a separate mode for emulating warp-synchronous execution where
threads in the same warp are executed in lock-step. This permits
WEFT to model current architectures that exhibit the behavior that
any thread in a warp arriving at a named barrier is equivalent to the
entire warp arriving [1]. This emulation mode also allows WEFT
to validate kernels which rely on a warp-synchronous execution
assumption for correctness. It is important to note that users must
explicitly opt into this mode of emulation as it is not guaranteed to
hold for future GPU architectures [14].

WEFT maintains a separate program for every thread in the
CTA. Whenever a PTX instruction that directly corresponds to a
command in our formal language is encountered (e.g. bar.sync)
the command is recorded in the program for the thread being
emulated. Since WEFT actually simulates PTX, it can unroll all
statically bound loops and evaluate static branch conditions to
automatically generate the necessary straight-line code. WEFT is
also sophisticated enough to track data exchanged through shared
memory or using shuffle instructions on the Kepler architecture.

Emulation of a CTA continues until one of three conditions is
met: all threads successfully return, a deadlock is detected where no
thread can make forward progress, or WEFT is unable to emulate a
required instruction. In the second case, WEFT will report the dead-
lock and how it occurred to the user. The third case arises because
WEFT doesn’t have access to the inputs to the CTA and cannot rea-
son about dynamic data stored in the framebuffer memory. WEFT
is smart enough to elide irrelevant instructions for which it doesn’t
have inputs (e.g. most floating point math), but it cannot soundly
ignore instructions which impact the translation to our formal lan-
guage. If WEFT encounters a conditional statement, shared mem-
ory access, or barrier statement which cannot be emulated because
the inputs depend on dynamic parameters to the CTA, then WEFT
will raise an error indicating that the kernel cannot be validated
by our approach. For all warp-specialized kernels of which we are
aware, WEFT successfully generates straight-line thread programs.

6 In weaving, a weft is used to maintain the alignment of threads in a warp.
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Figure 7. Barrier dependence graph for Figure 5.

5.2 Optimized WEFT Verification Algorithm
After WEFT has generated the thread programs for a CTA, it pro-
ceeds to check that the programs are well-synchronized and shared
memory race-free. Our initial version of WEFT used a direct im-
plementation of the algorithm in Figure 4 to check if a kernel was
well synchronized. Unfortunately, this approach did not scale to
many of the kernels we tested. The cause of the scaling problem
was the transitive closure computation over the relation R, which
is cubic in the number of commands; many of the kernels we con-
sidered contained tens to hundreds of millions of commands. To
allow WEFT to scale to these kernels, we employ a modified but
equivalent algorithm, with more sophisticated data structures to re-
duce both memory and computation costs.

The first step that WEFT takes is to construct a barrier depen-
dence graph which captures the happens-before relationship be-
tween barriers. WEFT omits all read and write commands from
the thread programs and simulates one execution of the CTA with
only the synchronization commands. Next, WEFT uses the algo-
rithm in Figure 4 to determine if the CTA is well-synchronized.
Since memory accesses do not affect synchronization, they can
be safely ignored without compromising the soundness or com-
pleteness of WELLSYNC. This simplification considerably reduces
the number of commands to consider and makes the computation
tractable for all of the kernels of which we are aware.

After verifying that the CTA is well-synchronized, WEFT con-
structs the barrier dependence graph. Each completed barrier is
converted to a single node in the graph and is assigned a gener-
ation. We call the nodes of the graph dynamic barriers. We use
cPi to denote the ith command of program P . The trace τ of Sec-
tion 4.2 creates the following nodes for Figure 3: n1 has cP1 , cQ1 ,
generation 1; n2 has cP3 , cQ2 , generation 1; n3 has cP4 , cQ4 , genera-
tion 2; n4 has cP5 , cQ6 , generation 2. Edges are added to the graph
by traversing each thread program both forward and backwards to
establish happens-before and happens-after relationships between
pairs of dynamic barriers. Figures 6 and 7 show the computed bar-
rier dependence graphs for the earlier examples of Figures 2 and
5 respectively. Note that the barrier dependence graph of a well-
synchronized CTA is always a directed acyclic graph.

After verifying that a kernel is well-synchronized and generat-
ing the barrier dependence graph, WEFT proceeds to check if a ker-
nel is race-free. Due to the large number of commands WEFT can-
not compute the standard transitive closure of Figure 4 and it cannot
traverse the graph of all commands. In order to scale to kernels re-
quiring hundreds of billions of race tests, WEFT performs constant
time race tests by computing the latest happens-before and earliest
happens-after points reachable in every thread program from every

Thread 0 Thread 1 Thread 2

Analysis
Point

Barrier

Barrier

Barrier

Barrier

Latest Happens-Before (HB) Point

Earliest Happens-After (HA) Point

HB

HB

HA

HA

Figure 8. Weft latest/earliest happens-before/after relationships.

program point. Figure 8 gives a visual depiction of these relation-
ships for a given analysis point with respect to two other threads.

By leveraging the latest/earliest happens-before/after points, it
is easy to determine if a race exists by performing a simple look-up
at the program point of one command in the race test. For a given
command c, the commands between the latest happens-before and
the earliest happens-after are the commands that can run in paral-
lel with c. For example, from Figure 5, the latest happens before
point for the second command of P (cP2 ) is the first command of
Q (cQ1 ). The command cQ1 is guaranteed to execute before cP2 and
the commands after cQ1 can run in parallel with cP2 . The earliest
happens-after point of cP2 is cQ3 as this read is guaranteed to exe-
cute after cP2 and commands before it can run in parallel with cP2 .
Given the barrier interval (cQ1 , c

Q
3 ), to know whether a command

cQk can run in parallel with cP2 , we just need to check whether cQk
belongs to this barrier interval or not, i.e., whether k ∈ (1, 3).

The crucial insight for scalability is that WEFT only needs
to perform latest/earliest happens-before/after reachability analysis
for all the nodes in the barrier dependence graph and not for every
program point in the thread programs. Individual program points
can later easily determine their latest/earliest happens-before/after
points by using the results from the dynamic barriers that imme-
diately precede and follow within the same thread program. This
greatly reduces both computation time and overall memory usage.

WEFT first computes the earliest/latest happens-after/before
points reachable in every thread program from each node in the bar-
rier dependence graph. Each dynamic barrier initializes its reacha-
bility points with its participants and sets the remaining values to
⊥. The transitive closure of reachability points is then computed
over the barrier dependence graph. WEFT avoids recomputation by
using a topological sort of the barrier nodes to guide the computa-
tion, requiring at worst O(D2) time for a kernel with D dynamic
barrier nodes. Since D is usually much smaller than the total num-
ber of commands, this approach is considerably faster. Further-
more, WEFT can leverage the knowledge that a fixed number of
dynamic barriers (usually 16) are live at a time to further improve
performance. If the kernel contains N thread programs, the results
only require O(DN) space to store, which is independent of the
total number of kernel commands. This computation produces the
barrier intervals for the synchronization commands. For example,
the generated barrier interval of cP1 ∈ n1 in thread Q is (cQ0 , c

Q
2 ),

where the 0th command is just a placeholder for the beginning of
a program. Similarly the barrier interval for cP3 ∈ n2 is (cQ1 , c

Q
3 ).

For individual program commands, WEFT computes the ear-
liest/latest happens-after/before relationships based on the results



Kernel Name Dynamic
Barriers

Shared
Addresses

Commands
(Thousands)

Race Tests
(Millions)

Programs
(threads)

Memory
Usage (MB)

Verification
Time (s)

Races
(B,H)

saxpy single 8192 512 3670 1878 320 3645 8.42 (no,no)
saxpy double 8192 1024 3670 939 384 4298 8.99 (no,no)
sgemv vecsingle 257 128 2142 17246 160 247 46.42 (no,no)
sgemv vecdouble 514 256 4285 34492 192 498 95.19 (no,no)
sgemv vecmanual 258 1024 8446 34490 160 814 147.81 (no,no)
sgemv bothsingle 514 4128 1287 4370 288 207 10.15 (no,no)
sgemv bothdouble 1028 8256 2573 8740 448 507 25.30 (no,no)
sgemv bothmanual 516 8256 1320 2185 416 305 7.74 (no,no)
rtm 1phase single 215 633 376 130 160 67 0.43 (Yes,no)
rtm 1phase manual 214 1265 372 74 160 67 0.26 (Yes,no)
rtm 2phase single 215 633 387 136 160 70 0.39 (Yes,Yes)
rtm 2phase manual 214 1265 382 77 160 69 0.32 (Yes,Yes)
rtm 2phase quad 208 1265 371 71 160 68 0.28 (Yes,Yes)

Figure 9. Verification results for the CudaDMA kernels. Races are classified as (benign,harmful).

Kernel Name Dynamic
Barriers

Shared
Addresses

Commands
(Thousands)

Race Tests
(Millions)

Programs
(threads)

Memory
Usage (MB)

Verification
Time (s)

Races
(B,H)

dme diff fermi 352 1930 2912 169264 320 600 398.00 (no,no)
dme diff kepler 352 1920 1075 255 320 411 1.40 (no,no)
dme visc kepler 128 1920 2058 1038 480 385 3.24 (no,no)
dme chem fermi 864 5536 5156 40463 512 1917 53.74 (no,no)
dme chem kepler 1760 3072 3866 2486 256 1143 11.91 (no,Yes)
hept diff kepler 416 1664 1490 633 416 723 2.60 (no,no)
hept visc fermi 128 1690 5897 168972 416 693 416.92 (no,no)
hept visc kepler 128 1664 2955 2530 416 419 5.22 (no,no)
hept chem fermi 992 5192 7572 83762 640 3330 135.03 (no,no)
hept chem kepler 928 6144 5241 2375 512 2153 11.82 (no,Yes)
prf diff kepler 672 3712 6414 5729 928 5099 22.18 (no,no)
prf visc fermi 4 3776 901 1737 1024 114 2.64 (no,no)
prf visc kepler 128 3712 14213 26706 1024 2123 68.43 (no,no)

Figure 10. Verification results for the Singe kernels. Races are classified as (benign,harmful).

stored in the barrier dependence graph. For each command, WEFT
consults the barriers in the same thread immediately before/after
the command with different physical barrier names to determine
the latest/earliest happens before/after for each thread program. For
example, the barrier interval of write cP2 is computed using the
barrier intervals of nodes n1 and n2. If there are S commands in
the program, this requires O(S) time to compute because there are
a constant number of dynamic barriers to consider (the maximum
number of live barriers). For a kernel with N thread programs, the
result of this computation requiresO(SN) memory to store. While
this is large, for most kernels it requires at most tens of gigabytes
of data which is within the range of many machines today.

After establishing the earliest happens-after and latest happens-
before relationships for each program command, WEFT examines
all pairs of shared memory accesses to a common address in which
at least one access is a write and determines if there is a race. Each
race test is a constant time look-up since each command knows the
earliest happens-after and latest happens-before command that can
be reached (if any) in every other thread program. As we will show
in Section 5.3, this approach allows WEFT to validate very large
and complex warp-specialized kernels in a reasonable amount of
time and memory.

5.3 Experiments
We evaluated WEFT by using it to validate 13 warp-specialized
kernels that use the CudaDMA library and 13 warp-specialized
kernels that were emitted by the Singe compiler. The CudaDMA
kernels ranged from 65-1561 lines of CUDA while the Singe ker-

nels ranged from 1684-13245 lines of CUDA. All our experiments
were run on an Intel Xeon X5680 Sandy Bridge processor clocked
at 3.33 GHz with 48 GB of memory divided across two NUMA
domains. The performance of WEFT is primarily limited either by
memory latency or memory bandwidth depending on both the pro-
cessor on which it is being run and the kernel being verified. WEFT
is multi-threaded to take advantage of the considerable amount of
memory-level parallelism available in our verification algorithm.
All our experiments using WEFT were run with four threads (two
per NUMA domain) as we found this to be the ideal settings for
maximizing memory system performance on our target machine.

Figures 9 and 10 show the verification results for the CudaDMA
and Singe kernels respectively. WEFT reports statistics on each
of the kernels including the number of dynamic barriers, total
shared memory addresses that are used, total commands in the
formal language from Section 3 across all threads, the number
of thread programs, and the total race tests that were performed.
Performance is measured by the time required to verify each kernel
and the total memory required to perform the verification. WEFT
reports whether the kernel is well-synchronized and race-free. Not
surprisingly, all the kernels we examined were well-synchronized
and therefore we omit these results from the tables. Kernels that
are not well-synchronized tend to hang or crash frequently. While
it is easy to cause such bugs to manifest, it is much more difficult
to diagnose their root cause. In the future, we anticipate WEFT
will be especially valuable in giving feedback for debugging warp-
specialized kernels that either deadlock or crash due to a violation
of the well-synchronized property during development.



1 global void two phase(...) {
2 shared float2 s PQ[...];
3 float2 ∗PQy buf = s PQ + PQY BUF OFFSET;
4 ...
5 if (tid < COMPUTE THREADS PER CTA) {
6 // Compute warps, main loop
7 for (int iz = 0; iz < NZ; iz++) {
8 ...
9 // Start next transfer to shared memory

10 dma ld pq.start async dma(); //barrier arrive
11 // Still reading old version in PQy buf
12 for (int j = 1; j < R; j++) {
13 const float2 v1 = PQy buf[PQ index−j], v2 = PQy buf[PQ index+j];
14 q Pxyl += c x[j] ∗ (v1.x + v2.x); q Qxyl += c x[j] ∗ (v1.y + v2.y);
15 }
16 }
17 } else { // DMA warps }
18 }

Listing 3. Write-after-read bug in two-phase RTM.

The performance results show that WEFT is capable of scal-
ing to very large kernels containing up to 8K dynamic barriers and
14 million commands. WEFT is able to verify most kernels in a
few minutes or less (within the time of a standard coffee break),
making it practical for use by real developers. WEFT also saves
the time the developers would normally invest in writing tests that
uncover deadlocks and data races; since WEFT is sound there is
no need to test for the properties that it checks and the testing
effort can be focused on other properties such as functional cor-
rectness. Moreover, since WEFT is complete, all errors reported
by WEFT are real errors and worth investigating. Finally, since the
time complexity is a small polynomial function, the tool execution
time is predictable. In the worst case, WEFT required seven min-
utes to verify the hept visc fermi kernel. This kernel makes ex-
tensive use of warp-synchronous programming to exchange thou-
sands of constants through the same shared memory locations, re-
quiring more than 168 billion race tests. Note that the use of the
new shuffle instructions available on the Kepler architecture by the
dme diff kepler kernel reduces the number of tests by three or-
ders of magnitude. The prf diff kepler kernel uses the most
memory (5.1 GB), but this usage is well within the memory limits
of most modern laptop and desktop machines.

WEFT found several different data races in seven of the ker-
nels from both the CudaDMA and Singe suites. These races can be
classified into two categories: benign and harmful. All of the re-
verse time migration (RTM) kernels from the CudaDMA test suite
had an instance of a benign data race where the developer intention-
ally had multiple threads load the same value from global memory
and write it to the same location in shared memory during the ini-
tialization loops of the kernel. The resulting code was simpler to
understand and maintain and caused negligible performance degra-
dation. The WEFT tool does not distinguish between benign and
harmful races and correctly reports all the competing writes to the
same shared memory locations as races. Since benign data races
can cause performance degradation, it is still important to report
them to the developer even if they do not break correctness.

The two-phase RTM kernels from the CudaDMA suite also
contained a bug which resulted in a number of harmful write-after-
read data races. Listing 3 shows the pertinent parts of code that
cause the data race in all of the two-phase RTM kernels. Initially,
a shared memory buffer called s PQ is allocated and an alias called
PQy buf is created as a pointer to the middle of the buffer (lines
2-3). Inside of the main loop of the compute warps, the placement
of the start async dma call (line 10) comes before the last use of
the shared memory buffer through the PQy buf pointer (line 13),
resulting in a write-after-read race as the DMA warps begin writing
into shared memory before the last read. Interestingly, this resolved

a two-year old non-determinism bug filed against the two-phase
kernels, which persisted because the single phase kernels achieved
higher performance.

Two Singe kernels also contained write-after-read data races.
Both the DME and Heptane chemistry kernels for the Kepler archi-
tecture contained instances where writes could occur before previ-
ous reads had completed. The cause of these races was a bug in the
heuristic that the Singe compiler uses for solving the NP-complete
bin-packing problem for managing dataflow transfers through the
limited space in shared memory. Interestingly, the bug only mani-
fested on the Kepler architecture where the additional register file
space permitted a more aggressive mapping strategy that stressed
the bin-packing solver. Despite extensive testing, as far as we know,
these write-after-read races have never manifested in practice on
current GPU architectures due to the large number of intermedi-
ate instructions. However, there is no guarantee that the bug in the
Singe compiler would not have manifested on future GPU archi-
tectures, further underscoring the need for verification of complex
warp-specialized kernels.

6. Discussion and Related Work
There is considerable literature on the verification of concurrent
programs and some recent work on GPU verification. Existing
work on GPU verification has focused on general-purpose verifica-
tion of GPU kernels and the need to handle various programming
constructs provided by GPU models. Our work is largely orthog-
onal: we focus on obtaining complete and efficient solutions for
handling the verification of named barriers by sacrificing expres-
siveness. We do not operate at the source level and we do not aim to
provide a general-purpose GPU verification tool. Instead, we focus
specifically on the problems associated with producer-consumer
named barriers, which no previous work addresses. Therefore, we
believe this work is largely complementary to the existing work
on verification of GPU programs. Furthermore, we feel that this
work provides a complete solution for the problems associated with
named barriers and could easily be integrated into a more general
purpose GPU verification framework.

There are many other verification tools which have attempted to
reason about the synchronization schemes of GPU kernels. GPU-
Verify [5, 8, 11, 12] is a general-purpose verifier for GPU kernels.
In the GPUVerify model, a CTA-wide barrier (e.g. syncthreads)
is the only synchronization mechanism. This restriction permits
GPUVerify to perform a two-thread reduction: a round robin
scheduling of threads is sufficient to detect all data races. A sim-
ilar reduction is also used by PUG [19]. While this reduction can
considerably reduce the cost of the analysis and simplifies the im-
plementation of the verifier, it does not have sufficient power to
handle the full generality of named barriers. GPUVerify can also
reason about warp-synchronous programming (as can WEFT) and
atomics (which WEFT does not) [4].

There are many different tools that use symbolic execution [10,
13, 20, 21] to search for bugs in GPU kernels. To the best of our
knowledge none of these tools has any support for reasoning about
named barriers. However, we see no fundamental reason that they
could not be modified to understand named barrier semantics.

GPU Amplify [18] relies on a combination of static and dy-
namic analysis to search for data races in GPU kernels. We believe
that our work subsumes and generalizes their approach for search-
ing for shared memory races. In particular, their approach can be
seen as a special case instance of WEFT that requires that all ker-
nels use only a single named barrier for CTA-wide synchronization.

In some ways, named barrier semantics are related to other
kinds of barriers. Java Phasers have similar semantics to named bar-
riers, but are implemented in software[23]. Other (non-exhaustive)
work on simple barriers such as those used for distributed program-



ming include [2, 17]. While there are some similarities, the funda-
mental implications of named barriers being a hardware resource
instead of a software object give them a much stricter semantics
which is therefore important to verify.

7. Conclusion
As GPU usage continues to expand into new application domains
with more task parallelism and larger working sets, warp special-
ization will become increasingly important for handling challeng-
ing kernels that do not fit the standard data-parallel paradigm. The
named barriers available on NVIDIA GPUs make warp special-
ization possible, but require more complex code with potentially
difficult to discern bugs.

We have presented WEFT, a verifier for kernels using named
barriers that is sound, complete, and efficient. Soundness ensures
that developers do not have to write any tests to check for synchro-
nization errors. Completeness ensures that all violations reported
by WEFT are actual bugs; there are no false alarms. WEFT runs on
large, complex, warp-specialized kernels requiring up to billions of
checks for race conditions and completes in a few minutes. Using
WEFT we validated 26 kernels and found several non-trivial bugs.
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