
Automatic Tracing in Task-Based Runtime Systems
Rohan Yadav

Stanford University
Stanford, California, USA
rohany@cs.stanford.edu

Michael Bauer
NVIDIA

Santa Clara, California, USA
mbauer@nvidia.com

David Broman
KTH Royal Institute of Technology

Stockholm, Sweden
dbro@kth.se

Michael Garland
NVIDIA

Santa Clara, California, USA
mgarland@nvidia.com

Alex Aiken
Stanford University

Stanford, California, USA
aiken@cs.stanford.edu

Fredrik Kjolstad
Stanford University

Stanford, California, USA
kjolstad@cs.stanford.edu

Abstract
Implicitly parallel task-based runtime systems often perform
dynamic analysis to discover dependencies in and extract
parallelism from sequential programs. Dependence analy-
sis becomes expensive as task granularity drops below a
threshold. Tracing techniques have been developed where
programmers annotate repeated program fragments (traces)
issued by the application, and the runtime system memoizes
the dependence analysis for those fragments, greatly reduc-
ing overhead when the fragments are executed again. How-
ever, manual trace annotation can be brittle and not easily
applicable to complex programs built through the composi-
tion of independent components. We introduce Apophenia,
a system that automatically traces the dependence analy-
sis of task-based runtime systems, removing the burden of
manual annotations from programmers and enabling new
and complex programs to be traced. Apophenia identifies
traces dynamically through a series of dynamic string analy-
ses, which find repeated program fragments in the stream of
tasks issued to the runtime system. We show that Apophe-
nia is able to come between 0.92x–1.03x the performance of
manually traced programs, and is able to effectively trace
previously untraced programs to yield speedups of between
0.91x–2.82x on the Perlmutter and Eos supercomputers.

CCSConcepts: •Computingmethodologies→Distributed
programming languages.

Keywords: Dynamic Analysis; Runtime Systems; Tracing

ACM Reference Format:
Rohan Yadav, Michael Bauer, David Broman, Michael Garland, Alex
Aiken, and Fredrik Kjolstad. 2025. Automatic Tracing in Task-Based
Runtime Systems. In Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1 (ASPLOS ’25), March 30-April 3,

This work is licensed under a Creative Commons
Attribution International 4.0 License.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0698-1/25/03
https://doi.org/10.1145/3669940.3707237

2025, Rotterdam, Netherlands. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3669940.3707237

1 Introduction
Implicitly parallel programming systems [3, 10, 12, 26, 42]
automatically extract parallelism from a sequential source
program through different forms of dynamic dependence
analysis. Automatic parallelization and communication infer-
ence has enabled composable high-level libraries [7, 41] to be
built on top of implicitly parallel task-based runtime systems.
However, the cost of the dependence analysis affects the per-
formance of implicitly parallel systems at scale and places
a floor on the minimum problem size that can be executed
efficiently [34]. Applications with tasks that are too small to
amortize the cost of dependence analysis is dominated by it
and run at low efficiency.
To improve the performance of implicitly parallel task-

based runtime systems, researchers have proposed tech-
niques [24, 25] to memoize, or trace, the dependence analysis.
Tracing records the results of the dependence analysis for
an issued program fragment, and then replays the results of
the analysis the next time an identical program fragment is
issued. Tracing has been shown to yield significant speedups
by eliminating the cost of the dependence analysis on itera-
tive programs. For example, tracing can reduce the per-task
overhead in the Legion [10] runtime system from ∼1ms to
∼100𝜇s [8], widening the scope of applications for which
task-based runtime systems can be effective.
A significant limitation of existing tracing techniques is

that they require the programmer to annotate repeatedly is-
sued program fragments with stop/start markers for the run-
time system. Programmer inserted annotations derail an im-
portant feature of implicitly parallel programming systems—
their correctness under program composition. As users de-
velop modular programs that pass data from one component
to another, the runtime system ensures that computations
launched by different modules maintain sequential seman-
tics by implicitly inserting the necessary data movement and
synchronization. However, programmer introduced trace
annotations do not obey these composition principles, and
the correct placement of trace annotations when composing

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3669940.3707237
https://doi.org/10.1145/3669940.3707237

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Rohan Yadav et al.

complex software becomes unclear. Functions defined in a
third-party library may contain operations that cannot by
traced by a practical tracing implementation, or may issue a
different sequence of operations on each invocation. Each of
these cases result in runtime errors, due to the incorrect trace
annotations constructing an ill-formed sequence of opera-
tions. Furthermore, even simple programs using high-level
implicitly parallel libraries can have traces that do not cor-
respond to syntactic loop structures in the source program,
making it difficult to correctly place tracing annotations. We
elaborate on such an example program in Section 2.
In order to improve programmer productivity and to en-

able the tracing of modular high-level programs, implicitly
parallel task-based systems should automatically identify
repeated sequences of operations, memoize their analysis re-
sults and cheaply replay the analysis as needed. We call this
the problem of automatic trace identification, which is similar
to Just-In-Time (JIT) compilation in the context of dynamic
language implementations [18, 20, 28]. JIT compilers for dy-
namic languages interpret bytecode during program startup,
and compile bytecode to native instructions as repeatedly
invoked program fragments become hot. Following this ar-
chitecture, implicitly parallel task-based runtimes should
interpret issued operations with a dynamic dependence anal-
ysis, and switch to an analysis-free compiled execution once
repeated sequences of operations are encountered.
We introduce our system Apophenia1, that acts as a JIT

compiler for the dependence analysis of an implicitly parallel
task-based runtime system. The key challenge that Apophe-
nia faces is the identification of repeated sequences of opera-
tions produced by the target program. Unlike JIT compilers,
the input to a task-based runtime system is a stream of tasks
that lacks information about control flow such as basic block
labels or function definitions. As such, Apophenia cannot
rely on these code landmarks or predictable execution flow to
identify repeated sequences of operations. Instead, Apophe-
nia analyzes the input stream of operations to find repetitions
by solving a series of online string analysis problems.
To demonstrate Apophenia, we develop an implementa-

tion within the Legion [10] runtime system as a front-end
component that sits between the application and Legion’s
dependence analysis engine. As operations are issued to Le-
gion, Apophenia performs a series of dynamic analyses to
identify repeatedly issued sequences of operations, and corre-
spondingly invokes Legion’s tracing engine [24] to memoize
and replay dependence analysis on these sequences. While
our prototype targets Legion, we believe that the ideas in
Apophenia can be directly applied to other task-based run-
time systems that perform a dynamic dependence analysis.

The specific contributions of this work are:
1. A formulation of the desirable properties of traces to

identify (Section 3).

1Apophenia is the tendency to notice patterns between unrelated things.

1 import cupynumeric as np

2 # Generate random system.

3 A = np.random.rand(N,N)

4 b = np.random.rand(N)

5 # Initialize solution and

6 # extract diagonal.

7 x = np.zeros(A.shape [1])

8 d = np.diag(A)

9 R = A - np.diag(d)

10 # Jacobi iteration.

11 for i in range(iters):

12 x = (b - np.dot(R, x)) / d

(a) Python source code.

1 DOT(R, x1, t1)

2 SUB(b, t1, t2)

3 DIV(t2, d, x2) # Iteration 1

4 DOT(R, x2, t1)

5 SUB(b, t1, t2)

6 DIV(t2, d, x1) # Iteration 2

7 DOT(R, x1, t1)

8 SUB(b, t1, t2)

9 DIV(t2, d, x2) # Iteration 3

10 DOT(R, x2, t1)

11 SUB(b, t1, t2)

12 DIV(t2, d, x1) # Iteration 4

(b) Main loop task stream.

Figure 1. A cuPyNumeric [7] program and the stream of
tasks it issues at runtime. An intuitive trace around the main
loop does not correspond to a repeated program fragment.

2. Algorithms to dynamically identify traces in an appli-
cation’s stream of operations (Section 4).

3. An implementation of Apophenia that targets the Le-
gion [10] runtime system.

To evaluate Apophenia, we apply it to the largest and
most complex Legion applications written to this date, in-
cluding production-grade scientific simulations and machine
learning applications. We show that on up to 64 GPUs of the
Perlmutter and Eos supercomputers, Apophenia is able to
achieve between 0.92x–1.03x the performance of manually
traced code, and is able to effectively trace previously un-
traced code built from the composition of high-level compo-
nents to yield end-to-end speedups of between 0.91x–2.82x.
As such, Apophenia is able to insulate programmers against
the overheads of task-based runtime systems on varying
applications and problem sizes, transparently and without
programmer intervention.

2 Motivating Example
We now show an example of high-level implicitly parallel

code where it is difficult for a programmer to place tracing
annotations. As part of developing the example, we provide
necessary background on the Legion [10] runtime system.

Figure 1a performs Jacobi iteration using cuPyNumeric [7],
a distributed drop-in replacement for NumPy. cuPyNumeric
distributes NumPy through a dynamic translation to Le-
gion. cuPyNumeric implements NumPy operations by issu-
ing one or more Legion tasks, which are designated functions
registered with the runtime system. Each NumPy array is
mapped to a Legion region, which is a multi-dimensional
array tracked by Legion. Each task takes a list of regions as
arguments. The stream of tasks launched by the main loop
of the cuPyNumeric program is in Figure 1b. For each task,
the first two arguments denote the inputs, while the third
argument is the output. Legion extracts parallelism from the
issued stream of tasks by analyzing the data dependencies
between tasks and the usage of their region arguments [9].

Automatic Tracing in Task-Based Runtime Systems ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

To trace a program fragment, the programmer issues a
tbegin(id) call (standing for “trace begin”) before and a
tend(id) call after the fragment. The first time Legion ex-
ecutes a trace with a particular id, it records the results of
the dependence analysis, and then replays the results when
executing the same trace id again [24]. For a trace to be valid,
the sequence of tasks and their region arguments encapsu-
lated by tbegin(id) and tend(id) calls must be exactly the
same for a given id. The same region arguments must be
used across trace invocations as the dependence analysis
is affected by the usages of the regions and how they are
partitioned. While we consider regions for a Legion imple-
mentation of Apophenia, this restriction generalizes to any
form of argument that affects the dependence analysis.

A natural attempt to trace the program in Figure 1a would
place the tbegin and tend around the body of the main for
loop. However, this annotation results in an invalid trace , for
a subtle reason that requires knowledge of the internals of
cuPyNumeric. The problem with this natural annotation is
the loop-carried use of the Python variable x, which is bound
to different cuPyNumeric arrays (regions) at different points
of execution. Upon entering loop iteration 𝑖 , x is bound to a
region arbitrarily named x1, which is used as an argument for
the first dot operation. As execution proceeds, cuPyNumeric
allocates a new region x2 for the result of the division with d,
and binds the Python variable x to the region x2. Therefore,
the next iteration 𝑖 + 1 issues a dot on x2, causing iteration
𝑖 + 1 to issue a different sequence of tasks than iteration 𝑖!
Issuing a different sequence of tasks with the same trace
id is a violation of the conditions to use tracing, and the
runtime system may either raise an error or fall back to the
expensive dependence analysis. This program illustrates a
real-world case where abstraction and composition make it
difficult to apply the low-level tracing technique.
To correctly trace the program in Figure 1a, a program-

mer must either add trace annotations around every two
iterations of the main loop, or use two different trace ID’s
for each different iteration’s repetition pattern. This steady
state of groups of two iterations is achieved because when
x is assigned, the region it refers to can be collected and
immediately reused by cuPyNumeric. Relying on this steady
state is brittle, as the addition of more operations in the main
loop or a change in cuPyNumeric’s region allocation policy
could perturb the way in which the necessary steady state
for tracing is achieved. Instead, Apophenia dynamically ana-
lyzes the stream of tasks and automatically discovers what
fragments of the application should be traced, removing this
concern from the programmer.

3 What Are Good Traces?
The overarching goal of Apophenia is to reduce the amount
of time the runtime spends performing dynamic dependence
analysis by selecting traces to replay. A simple model of a

tasking runtime system’s dependence analysis is that the
runtime spends time 𝛼 analyzing each task. The first time a
trace is issued, the dependence analysis results arememoized,
so the runtime spends time 𝛼𝑚 (memoization time) on each
task in the trace, where 𝛼𝑚 is slightly larger than 𝛼 . Then, on
subsequent executions of the trace, there is some constant 𝑐
amount of overhead to replaying the trace, but every task in
the trace only incurs an analysis cost of 𝛼𝑟 (replaying time),
where 𝛼𝑟 ≪ 𝛼 .

Using this model of the runtime system, we derive several
properties of traces that Apophenia should find. First, the
selected traces should maximize the number of traced opera-
tions to minimize the number of tasks that contribute an 𝛼

to the overall analysis cost. Next, the selected traces should
be relatively long so that the constant replay cost 𝑐 does not
accumulate. Finally, the set of selected traces should be small,
so that Apophenia does not continually memoize new traces
and pay 𝛼𝑚 per task in each new trace. Intuitively, the ideal
set of traces corresponds to the loops in the target program.

We now concretize the good traces that Apophenia should
find as the solutions of a concrete optimization problem.
Consider the sequence of tasks 𝑆 constructed from a complete
execution of the target program. A system for automatic trace
identification must construct from 𝑆

• A set of traces 𝑇 , containing sub-strings of 𝑆 ,
• A function 𝑓 : 𝑇 → interval set, mapping each 𝑡 ∈ 𝑇
to a set of intervals in 𝑆 that are matched by 𝑡 ,

thatmaximizes the coverage of 𝑓 , defined by coverage(𝑇, 𝑓) =∑
𝑡 ∈𝑇

∑
𝑖∈ 𝑓 (𝑡) |𝑖 |, subject to the constraints

1. ∀𝑡 ∈ 𝑇 , 𝑡 is longer than a minimum length,
2.

⋃
𝑡 ∈𝑇 𝑓 (𝑡) is a disjoint set of intervals.

Multiple solutions exist for this problem, so we prefer solu-
tions that first maximize the number of matched intervals
(
∑

𝑡 ∈𝑇 |𝑓 (𝑡) |), and thenminimize the total number of selected
traces (|𝑇 |). Maximizing coverage(𝑇, 𝑓) directly minimizes
the number of untraced tasks, and selecting a small set of
traces that repeats many times minimizes the memoization
cost of 𝛼𝑚 per task. Finally, a minimum length is placed on
traces to ensure that the constant replay cost 𝑐 can be effec-
tively amortized. We present a concrete problem instance
and example solutions in Figure 2.

The presented optimization problem precisely defines the
properties of traces that a system like Apophenia should
attempt to find, but it does not directly yield an algorithm
to discover good solutions. Additionally, the optimization
problem is structured in a post-hoc formulation, where an
optimal solution is constructed from the results of the entire
program execution. In practice, a system like Apophenia
must construct the solution (𝑇, 𝑓) in an online manner, using
the currently visible prefix of the sequence of tasks launched
by the application. In the next section, we discuss algorithms
for dynamically finding good solutions to this optimization
problem through a set of string processing algorithms.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Rohan Yadav et al.

Task Sequence:

Set of Traces: {T1T2T3, T1T2}

<latexit sha1_base64="wbBuGjLdWOQP9DQarLsb8F9yooQ=">AAAB/3icbZDLSsNAFIZP6q3WW1Rw42awCC6kJLWiy6IblxXSCzQhTKbTdujkwsxEKLELX8WNC0Xc+hrufBunbRba+sPAx3/O4Zz5g4QzqSzr2yisrK6tbxQ3S1vbO7t75v5BS8apILRJYh6LToAl5SyiTcUUp51EUBwGnLaD0e203n6gQrI4ctQ4oV6IBxHrM4KVtnzzyM2Q49uOX3X8i/Mc3Ylvlq2KNRNaBjuHMuRq+OaX24tJGtJIEY6l7NpWorwMC8UIp5OSm0qaYDLCA9rVGOGQSi+b3T9Bp9rpoX4s9IsUmrm/JzIcSjkOA90ZYjWUi7Wp+V+tm6r+tZexKEkVjch8UT/lSMVoGgbqMUGJ4mMNmAimb0VkiAUmSkdW0iHYi19ehla1Ytcql/e1cv0mj6MIx3ACZ2DDFdThDhrQBAKP8Ayv8GY8GS/Gu/Exby0Y+cwh/JHx+QPxmJQj</latexit>

Invalid Matching: f =

<latexit sha1_base64="+TU8enSR+4x1xqUzIU+ro5xZFnI=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoheh6MVjBfsBbSib7aZdursJuxuhhP4FLx4U8eof8ua/cZPmoK0PBh7vzTAzL4g508Z1v53S2vrG5lZ5u7Kzu7d/UD086ugoUYS2ScQj1QuwppxJ2jbMcNqLFcUi4LQbTO8yv/tElWaRfDSzmPoCjyULGcEmk0J0g4bVmlt3c6BV4hWkBgVaw+rXYBSRRFBpCMda9z03Nn6KlWGE03llkGgaYzLFY9q3VGJBtZ/mt87RmVVGKIyULWlQrv6eSLHQeiYC2ymwmehlLxP/8/qJCa/9lMk4MVSSxaIw4chEKHscjZiixPCZJZgoZm9FZIIVJsbGU7EheMsvr5LORd1r1C8fGrXmbRFHGU7gFM7Bgytowj20oA0EJvAMr/DmCOfFeXc+Fq0lp5g5hj9wPn8A+22NjQ==</latexit>

T1T2 7! {[3, 5)}

<latexit sha1_base64="BcKaPc18pM3HKG/4cMy82QbuqPc=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBZBQUpSW3RZdOOyQl+QhDCZTtqhM0mYmQglFNz4K25cKOLWn3Dn3zhpu9DWAwOHc+7lzjlBwqhUlvVtFFZW19Y3ipulre2d3T1z/6Aj41Rg0sYxi0UvQJIwGpG2ooqRXiII4gEj3WB0m/vdByIkjaOWGifE42gQ0ZBipLTkm0ct3275VehylEgVQzdzLi9g/dydlHyzbFWsKeAyseekDOZo+uaX249xykmkMENSOraVKC9DQlHMyKTkppIkCI/QgDiaRogT6WXTDBN4qpU+DGOhX6TgVP29kSEu5ZgHepIjNZSLXi7+5zmpCq+9jEZJqkiEZ4fClEEdNi8E9qkgWLGxJggLqv8K8RAJhJWuLS/BXoy8TDrVil2r1O9r5cbNvI4iOAYn4AzY4Ao0wB1ogjbA4BE8g1fwZjwZL8a78TEbLRjznUPwB8bnD7HslaI=</latexit>

Sub-Optimal Matching: f =

<latexit sha1_base64="+TU8enSR+4x1xqUzIU+ro5xZFnI=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoheh6MVjBfsBbSib7aZdursJuxuhhP4FLx4U8eof8ua/cZPmoK0PBh7vzTAzL4g508Z1v53S2vrG5lZ5u7Kzu7d/UD086ugoUYS2ScQj1QuwppxJ2jbMcNqLFcUi4LQbTO8yv/tElWaRfDSzmPoCjyULGcEmk0J0g4bVmlt3c6BV4hWkBgVaw+rXYBSRRFBpCMda9z03Nn6KlWGE03llkGgaYzLFY9q3VGJBtZ/mt87RmVVGKIyULWlQrv6eSLHQeiYC2ymwmehlLxP/8/qJCa/9lMk4MVSSxaIw4chEKHscjZiixPCZJZgoZm9FZIIVJsbGU7EheMsvr5LORd1r1C8fGrXmbRFHGU7gFM7Bgytowj20oA0EJvAMr/DmCOfFeXc+Fq0lp5g5hj9wPn8A+22NjQ==</latexit>

Optimal Matching: f =

<latexit sha1_base64="+TU8enSR+4x1xqUzIU+ro5xZFnI=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoheh6MVjBfsBbSib7aZdursJuxuhhP4FLx4U8eof8ua/cZPmoK0PBh7vzTAzL4g508Z1v53S2vrG5lZ5u7Kzu7d/UD086ugoUYS2ScQj1QuwppxJ2jbMcNqLFcUi4LQbTO8yv/tElWaRfDSzmPoCjyULGcEmk0J0g4bVmlt3c6BV4hWkBgVaw+rXYBSRRFBpCMda9z03Nn6KlWGE03llkGgaYzLFY9q3VGJBtZ/mt87RmVVGKIyULWlQrv6eSLHQeiYC2ymwmehlLxP/8/qJCa/9lMk4MVSSxaIw4chEKHscjZiixPCZJZgoZm9FZIIVJsbGU7EheMsvr5LORd1r1C8fGrXmbRFHGU7gFM7Bgytowj20oA0EJvAMr/DmCOfFeXc+Fq0lp5g5hj9wPn8A+22NjQ==</latexit>

T1T2T3 7! {[0, 3), [3, 6)}

<latexit sha1_base64="KCcGeqXmJoG6JeunHfYYh8XcRA0=">AAACDnicbVDLSsNAFJ34rPUVdelmsBQslJK09bEsunFZoS9IQphMJ+3QyYOZiVBCv8CNv+LGhSJuXbvzb5y0WWjrgYHDOfdy5xwvZlRIw/jW1tY3Nre2CzvF3b39g0P96LgnooRj0sURi/jAQ4IwGpKupJKRQcwJCjxG+t7kNvP7D4QLGoUdOY2JE6BRSH2KkVSSq5c7rtlx6x23Ae0AxUJG0E4towoblSq0GlV4WbFnRVcvGTVjDrhKzJyUQI62q3/ZwwgnAQklZkgIyzRi6aSIS4oZmRXtRJAY4QkaEUvREAVEOOk8zgyWlTKEfsTVCyWcq783UhQIMQ08NRkgORbLXib+51mJ9K+dlIZxIkmIF4f8hEEVOusGDiknWLKpIghzqv4K8RhxhKVqMCvBXI68Snr1mtmsXdw3S62bvI4COAVn4ByY4Aq0wB1ogy7A4BE8g1fwpj1pL9q79rEYXdPynRPwB9rnD1AomHY=</latexit>

T =

<latexit sha1_base64="kMTwURL/AKyC/2zEFjPm4CPzGBs=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mVFr0IRS8eK/QL2qVk02wbmmSXJCuUpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hY3Nre6e4W9rbPzg8Kh+fdHSUKELbJOKR6gVYU84kbRtmOO3FimIRcNoNpveZ332iSrNItswspr7AY8lCRrDJpBa6RcNyxa26C6B14uWkAjmaw/LXYBSRRFBpCMda9z03Nn6KlWGE03lpkGgaYzLFY9q3VGJBtZ8ubp2jC6uMUBgpW9Kghfp7IsVC65kIbKfAZqJXvUz8z+snJrzxUybjxFBJlovChCMToexxNGKKEsNnlmCimL0VkQlWmBgbT8mG4K2+vE46V1WvVq0/1iqNuzyOIpzBOVyCB9fQgAdoQhsITOAZXuHNEc6L8+58LFsLTj5zCn/gfP4A3++New==</latexit>

T1T2T3T1T2T3T1T2T1T2T1T2T3T1T2T1T2T3

<latexit sha1_base64="4+Tsu/P4pmeadUddnD1VW8temCc=">AAACMHicbVDLSgMxFL3js9bXqEs3wSK4KjNtRZdFF7qs0Be0w5BJ0zY0kxmSjFCGfpIbP0U3Coq49StM21lo2wOXHM65l5t7gpgzpR3n3Vpb39jc2s7t5Hf39g8O7aPjpooSSWiDRDyS7QArypmgDc00p+1YUhwGnLaC0e3Ubz1SqVgk6nocUy/EA8H6jGBtJN++q/suqvslU2W0mi++q7yybxecojMDWiZuRgqQoebbL91eRJKQCk04VqrjOrH2Uiw1I5xO8t1E0RiTER7QjqECh1R56ezgCTo3Sg/1I2lKaDRT/06kOFRqHAamM8R6qBa9qbjK6yS6f+2lTMSJpoLMF/UTjnSEpumhHpOUaD42BBPJzF8RGWKJiTYZ500I7uLJy6RZKrqV4uVDpVC9yeLIwSmcwQW4cAVVuIcaNIDAE7zCB3xaz9ab9WV9z1vXrGzmBP7B+vkF+CqhsA==</latexit>

T1T2 7! {[0, 2), [3, 5), [6, 8), [8, 10),

<latexit sha1_base64="UGRfu2RjsdLWKc1BPqHz88XSRlI=">AAACG3icbVDLSsNAFJ34rPVVdelmsAgWQklqq10W3bis0BekIUymk3boZBJmJkIJ/Q83/oobF4q4Elz4N07aLrT1wHAP59zLnXv8mFGpLOvbWFvf2Nzazu3kd/f2Dw4LR8cdGSUCkzaOWCR6PpKEUU7aiipGerEgKPQZ6frj28zvPhAhacRbahITN0RDTgOKkdKSV6i0PLvlVWA/RLFUEeynjmXCSsmEzqUJa1m9MmE9q3UT2lbJzHuFolW2ZoCrxF6QIlig6RU++4MIJyHhCjMkpWNbsXJTJBTFjEzz/USSGOExGhJHU45CIt10dtsUnmtlAINI6McVnKm/J1IUSjkJfd0ZIjWSy14m/uc5iQrqbkp5nCjC8XxRkDCoQ8iCggMqCFZsognCguq/QjxCAmGl48xCsJdPXiWdStmulmv31WLjZhFHDpyCM3ABbHANGuAONEEbYPAInsEreDOejBfj3fiYt64Zi5kT8AfG1w9ERpqi</latexit>

[10, 12), [13, 15), [15, 17)}

<latexit sha1_base64="Tn6Ca1vYh0PDBJcaEKXFuWklfco=">AAACCHicbZBNS8MwGMfT+TbnW9WjB4NDcDBGOzfmcejF4wT3Al0ZaZZuYWlaklQYY0cvfhUvHhTx6kfw5rcx7XrQzT8Efvyf50ny/L2IUaks69vIra1vbG7ltws7u3v7B+bhUUeGscCkjUMWip6HJGGUk7aiipFeJAgKPEa63uQmqXcfiJA05PdqGhE3QCNOfYqR0tbAPHVsqwztaqkMHftSUz2luqZGqT8vDMyiVbFSwVWwMyiCTK2B+dUfhjgOCFeYISn1/ZFyZ0goihmZF/qxJBHCEzQijkaOAiLdWbrIHJ5rZwj9UOjDFUzd3xMzFEg5DTzdGSA1lsu1xPyv5sTKv3JnlEexIhwvHvJjBlUIk1TgkAqCFZtqQFhQ/VeIx0ggrHR2SQj28sqr0KlW7FqlflcrNq+zOPLgBJyBC2CDBmiCW9ACbYDBI3gGr+DNeDJejHfjY9GaM7KZY/BHxucP4vyUMA==</latexit>

T1T2T3 7! {[0, 3), [3, 6), [10, 13), [15, 18)}

<latexit sha1_base64="f4Y/KBUejXR9OaRwf/NsIy6H9r8=">AAACInicbVDLSgMxFM34rPU16tJNsAgWSpnpQ+uu6MZlhb6gU4ZMmrahycyQZIQy9Fvc+CtuXCjqSvBjzLSz0NYDIYdz7r3JPV7IqFSW9WWsrW9sbm1ndrK7e/sHh+bRcVsGkcCkhQMWiK6HJGHUJy1FFSPdUBDEPUY63uQ28TsPREga+E01DUmfo5FPhxQjpSXXvG66dtMtNd0ydDgKpQqgE/esAiznC7BXLsDL5La1YM8Vu6pZLe/Msq6Zs4rWHHCV2CnJgRQN1/xwBgGOOPEVZkhKPTVU/RgJRTEjs6wTSRIiPEEj0tPUR5zIfjxfcQbPtTKAw0Do4ys4V393xIhLOeWeruRIjeWyl4j/eb1IDWv9mPphpIiPFw8NIwZ1EElecEAFwYpNNUFYUP1XiMdIIKx0qkkI9vLKq6RdKtqVYvW+kqvfpHFkwCk4AxfABlegDu5AA7QABo/gGbyCN+PJeDHejc9F6ZqR9pyAPzC+fwDpo50K</latexit>

T1T2 7! {[6, 8), [8, 10), [13, 15)}

<latexit sha1_base64="AWNzx7dFSKdAW6ktwqDZT27kg3I=">AAACFnicbZDLSsNAFIYn9VbrLerSzWARLNSS1Fa7LLpxWaE3SEKYTKft0MmFmYlQQp/Cja/ixoUibsWdb+OkzUJbfxj4+M85nDm/FzEqpGF8a7m19Y3Nrfx2YWd3b/9APzzqijDmmHRwyELe95AgjAakI6lkpB9xgnyPkZ43uU3rvQfCBQ2DtpxGxPHRKKBDipFUlqtftF2z7Vah7aNIyBDaiXVVho1SGVqNMjSNFMxLRfWSPSu4etGoGHPBVTAzKIJMLVf/sgchjn0SSMyQEJZpRNJJEJcUMzIr2LEgEcITNCKWwgD5RDjJ/KwZPFPOAA5Drl4g4dz9PZEgX4ip76lOH8mxWK6l5n81K5bDhpPQIIolCfBi0TBmUN2fZgQHlBMs2VQBwpyqv0I8RhxhqZJMQzCXT16FbrVi1ir1+1qxeZPFkQcn4BScAxNcgya4Ay3QARg8gmfwCt60J+1Fe9c+Fq05LZs5Bn+kff4AqLuaAQ==</latexit>

Overlapping
matches

coverage(T, f) = 14

coverage(T, f) = 18

Figure 2. Example of a task stream and fixed trace set𝑇 with
an invalid matching function 𝑓 , and two matching functions
with different coverage(𝑇, 𝑓).

4 Trace Identification
Dynamically finding good traces requires processing infor-
mation about the tasks seen so far, and then using that infor-
mation to record and replay traces in the future. An overview
of Apophenia’s dynamic analysis procedure is sketched in Al-
gorithm 1. Apophenia has two components that correspond
to the targets of the optimization problem in Section 3. The
trace finder constructs the candidate set of traces 𝑇 by accu-
mulating the tasks issued by the application into a buffer, and
asynchronously mining the buffer to find candidate traces.
The trace replayer then constructs the matching function 𝑓

by ingesting the candidate traces into a trie, and identify-
ing candidate traces in the application stream by maintain-
ing pointers into the trie that represent potential matches.
Apophenia intercepts calls to target runtime’s ExecuteTask
function, and forwards a potentially different set of tasks
and trace markers to the runtime. A concrete example of
how Apophenia identifies a trace in an application is shown
in Figure 3. We now describe each of these components in
detail.

4.1 A Stream of Tokens
An insight of our work is that automatic trace identifica-
tion is inherently an online string analysis problem of find-
ing repeated sub-sequences in the application’s task stream.
As seen in Figure 1b, the task stream is not just a list of
identifiers—tasks have arguments that must also be the same
across iterations to be used in a trace. To capture all aspects
of a task that can affect the dependence analysis, Apophenia
constructs a hash from each task and its region arguments.
Converting the input stream of tasks into a stream of hash
tokens enables more direct application of string processing
techniques, and straightforward handling of traceable oper-
ations that are not tasks.

4.2 Finding Traces With High Coverage
Apophenia’s trace finder records tasks as they are issued by
the application into a buffer (we describe a refinement to this
scheme in Section 4.4). Once the buffer fills up, Apophenia

Algorithm 1: Apophenia’s Dynamic Analysis.
/* Initialize token history buffer 𝐵 and pending async

analyses 𝐽 . */

1 𝐵, 𝐽 ← [], []
/* Initialize trie of candidates 𝐶, potential current

traces 𝐴, and pending tasks 𝑃. */

2 𝐶,𝐴, 𝑃 ← Trie(), [], []
/* Discussed in Section 4.2. */

3 TraceFinder (𝐻)
4 𝐵 ← 𝐵 + [𝐻]
5 if ShouldAnalyzeHistory(𝐵) then

/* What subset of the history to analyze is

discussed in Section 4.4. */

6 𝐵′ ← GetAnalysisSubset(𝐵)

/* Find repeated sub-strings. */

7 𝑗 ← async FindRepeats(𝐵′)
8 𝐽 ← 𝐽 + [𝑗]
9 𝐵 ← MaybeClearHistory(𝐵)

/* Discussed in Section 4.3. */

10 TraceReplayer (𝑇,𝐻)
11 if ∃ 𝑗 ∈ 𝐽 , 𝑗 is complete then
12 IngestCandidates(𝑗,𝐶)

13 𝑃 ← 𝑃 + [𝑇]
/* Advance all potential traces by 𝐻 in the trie

if possible. Remove impossible traces, and
extract fully matched candidates. */

14 𝐴← AdvanceActiveCandidates(𝐶,𝐴,𝐻)

15 𝐴← FilterInvalidCandidates(𝐶,𝐴)

16 𝐷,𝐴← FilterCompletedCandidates(𝐶,𝐴)

17 if |𝐷 | > 0 then
/* Select one of the pending candidates to

replay. Execute any tasks before it, and
issue a trace replay for the candidate. */

18 𝑅 ← SelectReplayTrace(𝐷, 𝑃,𝐴)

19 𝑃,𝐴← ExecuteAndReplay(𝑅, 𝑃,𝐴)

/* Applications issue tasks through Apophenia’s

ExecuteTask function. */

20 ExecuteTask (𝑇)
21 𝐻 ← Hash(𝑇)

22 TraceFinder(𝐻)

23 TraceReplayer(𝑇 , 𝐻)

launches an asynchronous analysis of the buffer to find a set
of traces within the buffer that maximize the coverage of the
buffer. We discuss previous ideas that are related to this goal,
and then describe the solution used in Apophenia.2

Existing Techniques. The Lempel-Ziv family of algo-
rithms use repeated sub-strings for compression. Algorithms
like LZ77 [35, 44, 45] maintain a sliding window of previous
tokens to search for repeats in when encoding upcoming
tokens. The LZW [39] algorithm avoids the use of a sliding
window by only increasing the length of any candidate re-
peat by a single token at a time. While not directly finding
a set of repeats with high coverage, similar algorithms that
use a sliding window would need to maintain and search in a
2We discuss more related work in Section 7.

Automatic Tracing in Task-Based Runtime Systems ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Application
issues task stream

T1 T2 T3 … T1 T2 T3 Apophenia hashes each task to
produce a stream of hashes

H1 H2 H3 … H1 H2 H3H2H1 …H3 H2H1 H3

H2H1 …H3 H2H1 …H3

When the buffer fills up, Apophenia
mines it for candidate traces

H1

H2

H2 H3

H4

H6

H2 H5

H3

Hash stream is accumulated into a buffer

Candidate traces are
 tracked in a trie

Application
issues candidate trace

T1 T2 T3
H1

H2

H2 H3

H4

H6

H2 H5

H3

Candidate trace is detected by
traversing the trie of hashes

Figure 3. Visualization of Apophenia’s dynamic analysis.

window the size of the analyzed buffer, resulting in quadratic
time complexity. In order to recognize a trace of length 𝑛, an
LZW-style algorithm would also need to encounter the trace
𝑛 − 1 times. We wanted an algorithm that is sub-quadratic in
order to scale to large buffer sizes. Real-world applications
we discuss in Section 6 have traces that contain more than
2000 tasks, requiring token buffers of at least twice that size
to detect a single repeat.
Within the programming languages community, recent

work by Sisco et al. [33] used a technique called tandem
repeat analysis [36] to find loops in the netlists that result
from compiling hardware description languages. A tandem
repeat is a sub-string 𝛼 that repeats contiguously within a
larger string 𝑆 , such that 𝛼𝑘 is a sub-string of 𝑆 , for some 𝑘 .
Despite the success that Sisco et al. had using tandem repeat
analysis, we found that even simple real world cuPyNumeric
programs did not contain enough tandem repeats for the
analysis to reliably identify a trace set with high coverage.
The reason is that while these real-world programs tended
to have repetitive main loops, there would often be irregu-
larly appearing computations such as convergence checks
or statistics calculations that occur infrequently between
loop iterations. As such, the strings that represented these
programs would not contain tandem repeats, but instead
repeated sub-strings separated by other tokens.
A relaxation of tandem repeat analysis is to search for

non-overlapping repeated sub-strings, which removes the
contiguity requirement on the repeats. Concretely, given the

string 𝑎𝑏𝑎𝑏𝑎𝑏, 𝑎𝑏𝑎𝑏 is an overlapping repeat, while 𝑎𝑏 is non-
overlapping. We could use non-overlapping repeated sub-
strings to assemble a set of traces 𝑇 and a disjoint mapping
𝑓 that achieves high coverage. While there exist standard
suffix-tree algorithms to find repeated sub-strings, we found
that the natural extensions of these algorithms to detect non-
overlapping repeated sub-strings also resulted in quadratic
runtime complexity.

Our Algorithm. In this work, we design a repeat finding
algorithm that is directly aware of the optimization problem
in Section 3 and runs in𝑂 (𝑛 log(𝑛)), where𝑛 is the size of the
token history buffer. At a high level, our algorithm makes a
pass through a suffix array constructed from the input buffer
to collect a set of candidate repeats. It then greedily selects
the largest repeated sub-strings that do not overlap with any
previously chosen sub-strings. Psuedocode for our algorithm
is in Algorithm 23, which takes a string 𝑆 and returns a set of
sub-strings that achieve high coverage of 𝑆 . We assume that
the reader is knowledgeable about suffix arrays and their
structural properties. However, understanding the algorithm
in Algorithm 2 is not required to understand its usage in
Apophenia, as discussed in Section 4.3 and Section 4.4.

As a first step, we construct a suffix array and longest com-
mon prefix array from the input buffer of tokens. We then
iterate through adjacent pairs of suffixes to construct a set of
candidate repeats, which are tuples of sub-strings defined by
their length, the repeated sub-string, and its starting position
in 𝑆 . These candidates are constructed based on whether or
not the shared prefix between adjacent suffix array entries
overlap. Once all of the candidates have been constructed,
we sort the candidates to greedily select candidates in order
of length, and select as many occurrences of a particular
sub-string as possible. We only select candidates that do
not overlap with any previously selected candidates, and
then deduplicate the chosen set of candidates as the result.
A sample execution of Algorithm 2 is shown in Figure 4.

Our algorithm can be implemented with time complexity
𝑂 (𝑛 log(𝑛)). Linear time algorithms exist for suffix array and
LCP array construction [23]. Two candidates are generated
for each entry in the suffix array, so sorting the candidates
takes 𝑂 (𝑛 log(𝑛)) time. The interval intersection step can
be reduced to constant time by leveraging the candidate it-
eration order, so the entire loop executes in 𝑂 (𝑛) time. In
particular, an array of length |𝑆 | can be maintained, and
as each candidate is selected, all positions covered by the
candidate are marked. Then, as candidates are iterated over
in decreasing length and increasing start position order, in-
terval intersection can be checked by checking if the start
or end of an interval is marked. Finally, the deduplication
can be done by generating a unique ID for each candidate
sub-string in the candidate generation phase, and adjusting

3We also present a standalone implementation of the algorithm available at
https://github.com/david-broman/matching-substrings.

https://github.com/david-broman/matching-substrings

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Rohan Yadav et al.

Algorithm 2: Non-overlapping repeated sub-strings.
1 FindRepeats (𝑆)
2 𝑆𝐴, 𝐿𝐶𝑃 ← SuffixArray(𝑆)

/* Candidates are tuples of string length, the

repeated sub-string, and starting position. */

3 𝐶 ← []
4 foreach 𝑖 ∈ [0, |𝑆𝐴 | − 1) do

/* Extract adjacent suffix array entries and

their overlap length. */

5 𝑠1, 𝑠2, 𝑝 ← 𝑆𝐴[𝑖], 𝑆𝐴[𝑖 + 1], 𝐿𝐶𝑃 [𝑖]
6 if [𝑠1 : 𝑠1 + 𝑝) ∩ [𝑠2 : 𝑠2 + 𝑝) = ∅ then

/* 𝑆 [𝑠1 : 𝑠1 + 𝑝] and 𝑆 [𝑠2 : 𝑠2 + 𝑝] are
repeated strings that do not overlap in
𝑆, so they are candidates. */

7 𝑟 ← 𝑆 [𝑠1 : 𝑠1 + 𝑝]
8 𝐶 ← 𝐶 + [(𝑝, 𝑟, 𝑠1), (𝑝, 𝑟, 𝑠2)]
9 else

/* 𝑆 [𝑠1 : 𝑠1 + 𝑝] and 𝑆 [𝑠2 : 𝑠2 + 𝑝] overlap in
𝑆. Assume 𝑠2 > 𝑠1, the other case is
symmetric. In this case, the overlap is
a collection of repeats of 𝑆 [𝑠1 : 𝑠1 + 𝑑],
by the structure of the suffix array. */

10 𝑑 ← 𝑠2 − 𝑠1
/* Break prefix into two chunks of

repeated pieces of 𝑆 [𝑠1 : 𝑠1 + 𝑑]. */

11 𝑙 ← (𝑝 + 𝑑)/2
/* Remove trailing tokens. */

12 𝑙 ← 𝑙 − (𝑙%𝑑)
13 𝑟 ← 𝑆 [𝑠1 : 𝑠1 + 𝑙]
14 𝐶 ← 𝐶 + [(𝑙, 𝑟 , 𝑠1), (𝑙, 𝑟 , 𝑠1 + 𝑙)]

/* Sort the candidates by decreasing length and by

increasing sub-string and start position. */

15 Sort(𝐶)

/* Greedily collect sub-strings that do not

overlap with previously chosen sub-strings. */

16 𝐼 , 𝑅 ← [], []
17 foreach (𝑙, _, 𝑠) ∈ 𝐶 do
18 if [𝑠, 𝑠 + 𝑙) does not intersect 𝐼 then
19 𝐼 ← 𝐼 + [[𝑠, 𝑠 + 𝑙)]
20 𝑅 ← 𝑅 + [𝑆 [𝑠 : 𝑠 + 𝑙]]
21 return 𝑅

the candidate representation to be a tuple of length, ID and
starting position; using this sort order allows deduplication
to be done at each iteration of the candidate selection loop.
Our algorithm aims to find good solutions to the opti-

mization problem in Section 3 by identifying long repeated
sub-strings and selecting as many as possible that do not
overlap with each other. We trade off between an optimal
solution to the optimization problem to instead find good
solutions and maintain a lower asymptotic runtime. There
are two such heuristics in our algorithm. First, when adja-
cent suffix array entries have a repetition, we consider only
the maximal length repetition instead of all sub-strings of
the repetition. Second, when we select which candidates
to keep, we greedily choose the largest candidates instead
of performing a bin-packing computation. Our algorithm

8
7
0
1
6
4
2
5
3

aabcbcbaa
aa
a

abcbcbaa

baa
bcbaa
bcbcbaa
cbaa
cbcbaa

Suffix Array Candidates

(1, a, 8), (1, a, 7)

(2, aa, 7), (2, aa, 0)
(1, a, 0), (1, a, 1)
— no overlap —
(1, b, 6), (1, b, 4)

(2, bc, 2), (2, bc, 4)
— no overlap —

(2, cb, 5), (2, cb, 3)

Su
ffi

x
St

ar
t I

nd
ex

Output
aa, bc

Figure 4. Execution of Algorithm 2 on “aabcbcbaa”. The
candidates for each suffix pair is shown between the pair.

is guaranteed to find the longest repeated sub-string, but
due to the second heuristic, we cannot provide theoretical
guarantees about the other chosen sub-strings. We show
in Section 6 that Apophenia using our algorithm is able to
identify good traces in complex, real-world applications.

4.3 Recognizing and Replaying Candidate Traces
Apophenia’s trace replayer uses Algorithm 2 to find candi-
date traces from the application’s history of tasks. In this
section, we discuss how Apophenia’s trace replayer identi-
fies and selects these candidate traces from the task stream
to record and replay. Our design of the trace replayer has
two major goals. First, the per-task overhead must be low,
as it is imperative for performance for the application to
issue as many tasks into the runtime as possible so that
the runtime can either replay traces or perform dependence
analysis ahead of execution. Slowing down the task launch
rate would result in exposed latency from various sources in
the runtime. Second, Apophenia must balance exploration
and exploitation when selecting traces. As more information
about the application is gained, Apophenia should switch to
better traces as it finds them. However, Apophenia should
not leave a steady state of replaying a particular trace until
it is confident that performance can be improved, as mem-
oization of the dependence analysis for new traces has a
cost.

As discussed previously, Apophenia accumulates a history
of tasks launched by the application and asynchronously
uses Algorithm 2 to select candidate traces. Asynchronous
analysis of task histories is important to avoid stalling the
application by waiting for the analysis to finish before ac-
cepting the next task from the application.
When an asynchronous analysis completes, Apophenia

ingests the results into a trie that maintains the current set of
candidate traces. Along with this trie, Apophenia maintains a
set of pointers into the trie that represent potential matched
traces. As tasks are issued, Apophenia updates the set of
pointers by creating new pointers for each new task, stepping
any existing pointers down the trie if possible, and removing

Automatic Tracing in Task-Based Runtime Systems ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

H2H1 H4H3 H6H5 H8H7

1
2

3

4

5
6

7

8

Figure 5. Visualization of Apophenia’s buffer sampling strat-
egy on a buffer of size 8. After processing the 𝑖’th task,
Apophenia mines the buffer slice labeled 𝑖 .

any pointers that are made invalid. Once a pointer reaches a
leaf of the trie and has matched a trace, Apophenia has the
option to forward the trace to the tasking runtime, wrapped
by tbegin and tend calls.

Apophenia uses a scoring function to select whichmatched
trace to replay when faced with multiple valid choices. The
scoring function is based on the length of the candidate trace
multiplied by a count of the number of times the trace has
appeared. In calculation of the score, we impose a maximum
value of the count that can be used, and exponentially decay
the value of the count by how many tasks have been encoun-
tered since the trace last appeared. Finally, we increase the
score slightly if a trace has already been replayed.
Our scoring function encodes heuristics about trace se-

lection and aims to balance exploration and exploitation.
We naturally prefer long traces over shorter ones, as longer
traces have the potential to eliminate more runtime overhead.
The capping of the appearance count allows for Apophenia
to eventually switch from a trace that appeared early during
program execution to a better trace that appears later in the
execution. Next, decaying the appearance count ensures that
a seemingly promising trace that occurs infrequently, does
not eventually hit a threshold, and disrupts a steady state.
Finally, since recording new traces has a cost, when faced
with traces of a similar score, we bias Apophenia towards a
trace it has already replayed.

4.4 Achieving Responsiveness and Quality
Apophenia’s trace finder accumulates tasks into a buffer and
mines the buffer for traces using Algorithm 2. An important
question is what should the size of that buffer be? The size of
this buffer trades off between responsiveness of the Apophe-
nia’s trace identification and the quality of traces Apophenia
is able to find. With a small buffer, Apophenia can identify
traces early but will not be able to identify traces in programs
with large loops. Meanwhile, a large buffer allows Apophenia
to identify long traces in complex applications but introduces
significant startup delay in smaller applications.
We did not want end users to be required to continually

adjust the buffer size parameter as their application changes.
As such, some strategy to adapt the buffer size along this
tradeoff space is necessary. We found that a strategy that

attempts to dynamically resize the buffer based on what
traces to find is unsatisfactory, as the system is unable to
differentiate between an application currently not repeating
operations versus an application repeating a sequence of
operations larger than the buffer size. Instead, we propose
a strategy that selects a large fixed buffer size upfront, and
then samples smaller pieces of the buffer in a principled
manner to be responsive to the occurrence of short traces.
Apophenia samples from the buffer guided by the ruler

function sequence [40], which provides a practically use-
ful sampling strategy with provable guarantees. The ruler
function counts the number of times a number can be evenly
divided by two. Applying it to the sequence 1, 2, 3, 4, . . . yields
the sequence 0, 1, 0, 2, Raising the sequence to the power
two yields 1, 2, 1, 4, . . ., which we can interpret as subsets
of the buffer to analyze. For example, with a buffer size of
four, as tasks arrive Apophenia would first analyze the first
task, then the first two tasks, then the third task, and finally
all four tasks. A visualization of this sampling policy is in
Figure 5. This sampling policy lets Apophenia quickly react
to changes in the application by analyzing recent pieces of
the buffer while allowing larger traces to be found by in-
frequently analyzing longer components of the buffer. For
example, sampling the full buffer in Figure 5 is required to
find a trace that repeats in positions H2-H4 and H5-H7. In
practice, we use the exponentiated ruler function as the mul-
tiples of a larger constant (such as 250) to sample the buffer
with. Finally, given that our algorithm in Section 4 runs in
𝑂 (𝑛 log(𝑛)), we show that our sampling strategy increases
the total runtime complexity of processing the buffer by only
an extra log factor, yielding a total of𝑂 (𝑛 log2 (𝑛)). This tech-
nique enables all of the experiments in Section 6 to be run
with the same buffer size configuration parameter.

5 Implementation Discussion
We now discuss important aspects of a realistic implemen-
tation of Apophenia. In particular, we discuss the specifics
of implementing Apophenia in a distributed context and a
decision not to perform speculation when replaying traces.

5.1 Distributing the Analysis
Apophenia’s analysis as presented in Section 4 is sequential,
processing tasks as they are issued by the application. In a
distributed setting, Apophenia leverages Legion’s dynamic
control replication [8] to act as a sequential analysis, except
for one component, which we discuss next. With control
replication, the application executes on each node and Le-
gion shards the dependence analysis and execution across
nodes. The main restriction of control replication is that the
application must issue the same sequence of tasks on every
node. We implement Apophenia as a layer between the appli-
cation and Legion, meaning that Apophenia intercepts calls
into the Legion runtime from the application and forwards a

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Rohan Yadav et al.

(possibly different) set of calls into Legion. As such, Apophe-
nia inherits the control replication requirements of the appli-
cation. In particular, each node must agree on which traces
to replay and when during program execution to record and
replay the traces.
The only source of non-determinism in Apophenia that

may result in divergent decisions between nodes is the asyn-
chronous processing of token buffers described in Section 4.2.
An instance of Apophenia exists on each node of the target
machine, and each instance maintains a local history buffer
of tasks to run asynchronous analyses on. The asynchronous
analysis may complete earlier on one node than another,
resulting in that node replaying a trace before another node
has identified that trace as a candidate. However, making the
analysis synchronous would result in stalling the application
until analyses complete. We resolve this tension by having
each node agree on a count of processed operations to issue
before ingesting the results of an asynchronous analysis. If
any node had to wait on an asynchronous analysis to com-
plete, all nodes increase their count of operations to wait on
for the next analysis. This strategy reaches a steady state
where analysis results are ingested in a deterministic manner
without stalling the application.

5.2 (The Lack of) Speculation
Speculation is a common technique in computer architec-
ture to efficiently execute programs with data-dependent
control flow. As Apophenia has similarities to speculative
components in architecture like trace caches (Section 7), a
natural design decision was if Apophenia should speculate
on whether traces would be issued by the application. Our
implementation of Apophenia does not speculate and waits
for the entirety of a trace to arrive before issuing the trace
to Legion. The relative costs of different operations within
the Legion runtime system made the potential upside of
speculation not worth the implementation complexity.
Legion employs a pipelined architecture where a task

flows through three stages: 1) the application phase, where
the task is launched (into Apophenia), 2) the analysis phase,
where the task is analyzed or replayed as part of a trace, and
3) the execution phase, where the task is executed. Depend-
ing on the cost ratio of the application and analysis phases,
speculation may be beneficial as Apophenia waits for an
entire trace to pass through the application phase. Legion’s
analysis phase is an order of magnitude more expensive than
the application phase, letting the application phase run far
ahead of the analysis phase. Thus, waiting for an entire trace
to be issued by the application rarely stalls the pipeline and
gets exposed in the overall runtime. Thus, we found that
designing a trace prediction algorithm and implementing a
backup-rollback-recover scheme on speculation failures was
not worth the complexity.

6 Evaluation
Overview. We evaluate Apophenia on the largest and

most complex Legion applications written to date, includ-
ing production scientific simulations and a distributed deep
learning framework. Our results show that Apophenia is able
to effectively find traces in complex programs with lower
overhead, enabling programmers to experience the benefits
of tracing without manual effort and allowing a more general
set of applications to be traced.

Experimental Setup. We evaluated Apophenia on the
Eos and Perlmutter supercomputers. Each node of Eos is
an NVIDIA DGX H100, containing 8 H100 GPUs with 80
GB of memory and a 112 core Intel Xeon Platinum. Each
node of Perlmutter contains 4 NVIDIA A100 GPUs with 40
GB of memory and a 64 core AMD EPYC 7763. Nodes of
Eos are connected with an Infiniband interconnect, while
Perlmutter uses a Slingshot interconnect. We compile Le-
gion on Eos with the UCX networking module, and use the
GASNet-EX [11] networking module on Perlmutter. We do
not execute each application on both Perlmutter and Eos
due to differences between the local environments on each
machine. In our experiments, we evaluate the relative perfor-
mance differences between traced and untraced programs,
and comparisons between machines are not significant.

6.1 Weak Scaling
In this section, we discuss weak scaling results of applica-
tions using Apophenia, as shown in Figure 6 and Figure 7.
In a weak scaling study, we increase the problem size as the
size of the target machine grows to keep the problem size
per processor constant. For each application, we perform a
sweep over different sizes of the problem to vary the task
granularity, thus affecting the impact of runtime overhead.
These different problem sizes are denoted in the graph by
the “-s”, “-m” and “-l” label suffixes which stand for small,
medium and large. At smaller problem sizes, more runtime
overhead can be exposed, while larger problem sizes make it
easier to hide runtime overhead. In each weak-scaling plot,
we report the steady-state throughput of each configuration
and problem size after a number of warmup iterations (dis-
cussed in Section 6.3). We report throughput in iterations
per second achieved by each configuration, so within a par-
ticular problem size, higher is better; across problem sizes,
the smaller problem sizes will achieve a higher iterations per
second than the larger problem sizes.

S3D. S3D [37] is a production combustion chemistry sim-
ulation code that has been developed over the course of
many years by different scientists and engineers. The Legion
port of S3D implements the right-hand-side function of the
Runge-Kutta scheme, and interoperates with the legacy For-
tran+MPI driver of the simulation. The integration between

Automatic Tracing in Task-Based Runtime Systems ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

4 8 16 32 64
GPUs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

 /
se

co
nd

)

auto-s
auto-m
auto-l

manual-s
manual-m
manual-l

untraced-s
untraced-m
untraced-l

(a) S3D (Perlmutter)

4 8 16 32 64
GPUs

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

 /
se

co
nd

)

auto-s
auto-m
auto-l

manual-s
manual-m
manual-l

untraced-s
untraced-m
untraced-l

(b) HTR-Solver (Perlmutter)

Figure 6.Weak scaling on previously traced Legion applications, where Apophenia (“auto”) performs competitively.

1 2 4 8 16 32 64
GPUs

0

2

4

6

8

10

12

14

16

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

 /
se

co
nd

)

auto-s
auto-m
auto-l

untraced-s
untraced-m
untraced-l

(a) CFD (Eos)

1 2 4 8 16 32 64
GPUs

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

 /
se

co
nd

)

auto-s
auto-m
auto-l
untraced-s
untraced-m
untraced-l

(b) TorchSWE (Eos)

Figure 7.Weak scaling on cuPyNumeric applications, where Apophenia (“auto”) outperforms the untraced version.

Legion and the legacy Fortran+MPI code leads to various con-
straints that the manual trace annotations interact with. For
example, during the first 10 iterations, a hand-off between
Legion and Fortran+MPI must occur every iteration, while
after the first 10 iterations a hand-off is required only every
10 iterations. While not unmanageable, these interactions
have led to relatively complicated logic to manually trace
the main loop. We scale S3D on Perlmutter, and compare the
performance of Apophenia to manually traced and untraced
versions of S3D. The results are shown in Figure 6a. Even on
a single node, tracing has a noticeable performance impact
on the smaller problem sizes and affects the scalability of S3D.
Apophenia achieves within 0.92x–1.03x of the performance
of the manually traced version, and between 0.98x–1.82x
speedups over the untraced version. Manual annotations can
slightly outperform Apophenia by leveraging application
knowledge to select traces that have lower replay overhead.

HTR. HTR [17] is a production hypersonic aerothermody-
namics application. HTR performs multi-physics simulations
of hypersonic flows at high enthalpies and Mach numbers,
such as for simulations of the reentry of spacecraft into the
atmosphere. Like S3D, we evaluate Apophenia’s performance
on HTR on Perlmutter, and compare it against a manually
traced version and an untraced version. While HTR with-
out tracing performs competitively to the traced version at
small GPU counts, Figure 6b shows that tracing is necessary
for performance at scale. Apophenia achieves within 0.99x–
1.01x of the performance of the manually traced version, and
between 0.96x–1.21x speedups over the untraced version.

CFD. CFD is a cuPyNumeric application that solves the
Navier-Stokes equations for 2D channel flow [5]. Unlike S3D
and HTR, there is not a manually traced version of CFD, due
to the difficulties around composition discussed in Section 2.
Developing a manually traced implementation of CFD would

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Rohan Yadav et al.

require either rewriting the application to remove any dy-
namic region allocation, or manual examination of allocator
logs to find the number of iterations in the steady state. As
a result, we compare CFD with Apophenia to the standard
untraced version on different problem sizes, which is the
performance that cuPyNumeric users are able to achieve
today.
Figure 7a shows weak scaling results for CFD on Eos.

These results are similar to HTR, where leveraging tracing
is necessary for performance at scale. On the smallest prob-
lem size, even though the tracing removes a large amount of
runtime overhead, the tasks are too small to hide the commu-
nication latency at larger scales, leading to the observed fall
off in performance. On larger problems, CFD with Apophe-
nia is able to maintain high performance while the untraced
version falls off, yielding between 0.92x–2.64x speedups.

TorchSWE. TorchSWE is a cuPyNumeric port of the MPI-
based TorchSWE [13] shallow-water equation solver, and is
the largest cuPyNumeric application developed so far. Simi-
larly to CFD, there is no manually traced version to compare
to. However, unlike CFD, performing a rewrite of TorchSWE
to enable manual tracing would be difficult, as TorchSWE
contains an order of magnitude more lines of code. Weak
scaling results for TorchSWE on Eos are shown in Figure 7b,
which show that TorchSWE is significantly impacted by Le-
gion runtime overhead without tracing.

These results demonstrate that there does not exist a prob-
lem size for TorchSWE on Eos that can hide Legion’s run-
time overhead without tracing. Even the large problem size,
which nearly reaches the GPU’s memory capacity, exposes
Legion runtime overhead at 8 GPUs. The reason for this is
that TorchSWE maintains a large number of fields for each
simulated point, and issues different array operations on
each field. The amount of data needed for each element in
the simulation does not allow the task granularity to be eas-
ily increased to the untraced Legion minimum of 1̃ms per
task, as each new element added increases the memory foot-
print more than it increases the average task granularity. For
such applications, leveraging tracing is a requirement, and
Apophenia enables complex applications like TorchSWE to
do so automatically. TorchSWE itself contains enough task
parallelism to hide communication latencies, but needs trac-
ing to first lower runtime overhead. With Apophenia, we are
able to achieve between 0.91x–2.82x speedup on TorchSWE,
achieving nearly perfect scalability on 64 GPUs.

6.2 Strong-Scaling
We now move from scientific simulation codes to distributed
deep neural network trainingwith FlexFlow [22, 38]. FlexFlow
is a deep neural network framework that searches for hybrid
parallelization strategies for different layers of the network.
We perform a strong-scaling experiment with FlexFlow on

5 10 15 20 25 30
GPUs

1

2

3

4

5

6

S
pe
ed
up

auto-5000
auto-200
manual
untraced

Figure 8. Strong scaling of FlexFlow on Eos.

Eos to train the largest (pilot1) network from the CAN-
DLE [1] initiative4. A strong-scaling study fixes the problem
size on a single processor, and increases the number of pro-
cessors while keeping total problem size constant. To strong
scale the training, we fix the batch size for single GPU, and
then increases the number of GPUs available.
We compare the performance of FlexFlow with manual

trace annotations, two configurations of Apophenia (dis-
cussed next), and no tracing. As seen in Figure 8, as FlexFlow
scales up, the tasks become smaller and begin to expose
Legion runtime overhead without tracing, leading to slow-
downs when scaling up. The two configurations of Apophe-
nia differ in themaximum trace length to be replayed (Apophe-
nia’s history buffer is the same, but recorded traces are bro-
ken into pieces of a given maximum size). The first (auto-
5000) is the standard configuration with no maximum, as
used in all other experiments, and the second (auto-200) has
a maximum length of 200 tasks, which is similar to the length
of the manually annotated trace. As FlexFlow strong scales,
the cost of Legion issuing the trace replay starts to become
exposed as the execution time of the trace decreases, leading
to shorter traces exposing less latency, and thus performing
better5. On 32 GPUs, the configuration of Apophenia with
a maximum trace length of 200 achieves between 0.97x the
performance of the manually traced FlexFlow, and achieves
a 1.5x speedup over the untraced FlexFlow.

6.3 Overheads of Apophenia
We now discuss the overheads that Apophenia imposes over
standard execution with Legion. While we inherit the over-
heads of Legion’s existing tracing infrastructure [24] (the
cost of memoizing traces), Apophenia imposes two new

4Due to engineering limitations in FlexFlow at the time of writing, the
network was parallelized only with data parallelism.
5The Legion team is aware of this shortcoming and plans to address it in
the future.

Automatic Tracing in Task-Based Runtime Systems ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

sources of overhead to measure: 1) the overhead on task
launches and 2) the time taken until a steady state is reached.
As discussed in Section 4, Apophenia intercepts the ap-

plication’s task launches and performs some analysis work
before forwarding the task launches to Legion. This anal-
ysis work includes launching asynchronous token buffer
processing jobs and manipulating traversals of the trie data
structures used for online trace identification. To quantify
this overhead, we ran a two node experiment on Perlmut-
ter and measured the time it took to launch (not analyze
or execute) Legion tasks with and without Apophenia en-
abled. We ran a two node experiment to ensure that the
coordination logic discussed in Section 5.1 was included in
timing. We found that task launching took on average 7𝜇s
without Apophenia, and on average 12𝜇s with Apophenia.
While Apophenia increases the task launch overhead, this
overhead is still significantly lower than the amount of time
it takes to replay a task as part of a trace, which is 100𝜇s.
As such, the task launching cost of Apophenia can still be
effectively hidden by the asynchronous runtime architecture.
The asynchronous analysis jobs that Apophenia launches
to process task histories do not affect the critical path, and
utilize Legion’s background worker threads. While in theory
these jobs could compete for the resources necessary for Le-
gion’s dependence analysis, we have not yet encountered an
application where they caused a detriment in performance.
To measure the time taken until Apophenia reaches a

steady state of replaying traces on our iterative applications,
we report the number of iterations until a steady state is
reached. Figure 9 contains the iteration counts needed for
each application in Section 6.1 and Section 6.2, which range
from 30 to 300. These simulation and machine learning work-
loads would be run in production for a significantly larger
number of iterations, so speedup in the steady state cor-
responds closely to end-to-end speedup. We note that the
cuPyNumeric applications have a larger number of required
warmup iterations due to the dynamic behavior discussed
in Section 2, where a single application-level iteration of
the program does not necessarily correspond to a repeated
sequence of tasks.
In terms of resource utilization, Apophenia requires a

modest amount of CPUmemory to store the history buffer of
tasks for analysis. Apophenia runs the asynchronous string
analysis (Section 4.2) on Legion’s backgroundworker threads.
We have not found these resource requirements to impact
application performance or memory utilization.

6.4 Trace Search
To give intuition about the search process that Apophenia
performs, we constructed a visualization of the amount of
runtime overhead that Apophenia is removing over time. Fig-
ure 10 is a visualization of S3D over time (for 70 iterations),
where each for task launched by S3D, we display how many

Application Iterations Until Steady State
S3D 50
HTR 50
CFD 300

TorchSWE 300
FlexFlow 30

Figure 9. Warmup iterations before Apophenia reaches a
replaying steady state.

10000 20000 30000 40000 50000
S3D Task Index

0

20

40

60

80

100

P
er

ce
nt

 o
f L

as
t 5

00
0

Ta
sk

s
Tr

ac
ed

Figure 10. Visualization of Apophenia finding traces in S3D.

of the previous 5000 tasks were traced. For iterative com-
putations, this procedure yields the expected result, where
Apophenia spends time during program startup discovering
new traces, and then settles into a steady state. The amount
of traced operations increases slightly by the end of the exe-
cution, as Apophenia finds a better set of traces that lowers
the number of untraced operations.

7 Related Work
Just-In-TimeCompilers. Just-In-Time (JIT) compilers [18,

20, 28] for dynamic languages have a tiered execution sys-
tem, where the target language is first translated to bytecode,
which is executed by an interpreter. Frequently executed
program fragments are then compiled into native instruc-
tions for significantly faster execution. Apophenia employs
a similar architecture where a task-based runtime system’s
dynamic analysis acts as the slow but general interpreter,
and uses a tracing engine as the fast but specialized compiler.
Tracing-based JIT compilers such as TraceMonkey [19]

record sequences of instructions executed at runtime and
generate optimized code for those sequences. Method-based
JIT compilers identify frequently invoked functions in the
target program and compile type-specialized versions of
those functions. JIT compilers identify the desired instruc-
tion sequences or methods to compile by relying on code
landmarks like function definitions and basic block addresses
to maintain counters of frequently executed program frag-
ments. Since Apophenia views an unrolled stream of tasks, it

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Rohan Yadav et al.

must employ novel techniques for identification of traceable
program fragments.
JIT compilers also perform dynamic analysis to recover

data structures like call-graphs from the target program.
Sampling-based methods [43] have been developed to bal-
ance runtime cost of profiling each function call with the
accuracy of the sampled data structure. Discovering traces in
our work requires for long contiguous sequences of issued
tasks to be analyzed together, as a trace must repeat several
times to be considered by Apophenia. Breaking up these se-
quences with independent and non-contiguous samples can
lead to a loss of precision when discovering traces. Instead,
Apophenia employs an always-on approach where all tasks
are analyzed, and uses a sub-sampling method on the set of
collected tasks to manage the trade off between responsive-
ness of the trace analysis and length of the discovered traces.
An always-on approach is cheaper to use in the task-based
runtime system context than within a standard JIT compiler
as tasks are relatively coarse when compared to bytecode
instructions.

Trace Caches. Trace caches [31] have been used in pro-
cessors to improve instruction fetching bandwidth. At a high
level, trace caches record the common jump paths taken
through basic blocks, and pre-fetch those paths when revisit-
ing the same basic blocks. Apophenia shares a similar archi-
tecture to trace caches, which also use patterns in running
programs to improve the performance of a slower dynamic
component (in this case, the control-dependent instruction
fetching). Similarly to JIT compilers, trace caches also use
landmarks in executing programs to guide their decisions,
which Apophenia is not able to exploit. Also, by virtue of
being implemented in hardware, the mechanisms that trace
caches must be simpler than the kinds of analyses Apophenia
can use, which are implemented in software.

String Analysis. Section 4.2 contains a partial discussion
of related string analysis works—we continue the discussion
here. The most relevant string processing problem in the
bio-informatics community is motif finding [14], which is
the problem of finding short (5–20 token long), fixed-length
repeated strings in a larger corpus. The focus on a short
and fixed sub-string length and a tendency to use genomic
information to guide the search makes these techniques not
applicable to our problem. Algorithms for document fin-
gerprinting such as Moss [32] have been developed that
accurately identify copies between documents. In particular,
these techniques are guaranteed to detect if repetitions of at
least a minimum size exist across documents. Fingerprinting
techniques are useful to detect whether there exist repeated
sub-strings, but do not directly aid in finding the sub-strings
themselves that have high coverage.

Inspector-Executor Frameworks. Apophenia is similar
in spirit to Inspector-Executor (I/E) frameworks that dynam-
ically analyze program behavior and then perform optimiza-
tions [29, 30]. I/E frameworks generally focus on recording
information related to array accesses and use knowledge
of these accesses to perform compiler optimizations that
parallelize or distributed loops. In contrast, Apophenia ob-
serves a dynamic sequence of tasks and searches for repeated
sub-sequences of tasks to record as traces.

Task-Based Runtime Systems. Several task-based run-
time systems have been developed for high performance
computing [3, 10, 12], data science [16, 42], and machine
learning [6, 26]. One axis of runtime overhead that these
different systems impose on applications is the cost of depen-
dence analysis. The cost of dependence analysis is directly
related to the expressivity and flexibility of the runtime sys-
tem’s programming model. Legion has an expressive data
model that supports content-based coherence [9], leading to a
relatively expensive dependence analysis. As a result, trac-
ing [24] was developed to reduce the costs of the dependence
analysis. Both the StarPU [2] and PARSEC [21] runtime sys-
tems have modes that perform a dynamic dependence analy-
sis to extract parallelism, and these modes have been shown
to add overheads over the explicitly-parallel, analysis free
modes [34]. Tracing techniques could be applied within these
runtime systems to lower the overheads of the dynamic, im-
plicitly parallel modes.
Techniques similar to tracing have also been developed

in other runtime systems to lower overheads. A tracing-like
technique called Execution Templates [25] was developed to
cache control plane decisions in runtime systems for cloud-
based environments. The Dask [16] runtime system exposes
an API for users to explicitly construct and optimize task
graphs [15], which is lower-level but more efficient than the
standard individual task launching API. The Ray [26] run-
time system has recently added an execution mode called
“Compiled Graphs” [4], where users build explicit computa-
tion graphs and issue them to Ray for lower overhead replay.
Finally, the CUDA runtime exposes a similar feature to trac-
ing called CUDA Graphs [27], where users may record a
sequence of CUDA kernel launches and replay the sequence
with lower overheads. Techniques used in Apophenia could
potentially be applied to these systems to remove the re-
quirement for users to be involved in the memoization and
optimization of these computations.

8 Conclusion
In this work, we introduce Apophenia, a system and frame-
work for task-based runtime systems to automatically trace
the dependence analyses for repeated program. By automat-
ically detecting traces, Apophenia is able to improve pro-
grammer productivity by insulating programmers against
changing task granularity, and enable new applications to

Automatic Tracing in Task-Based Runtime Systems ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

take advantage of tracing. We develop an implementation
of Apophenia that targets the Legion runtime system and
show that on the most complex Legion applications written
to this date, Apophenia is able to match the performance
of manually traced code, and effectively optimize currently
untraceable programs to improve the performance at scale
by up to 2.82x.

Acknowledgements
We thank Wonchan Lee, Manolis Papadakis and Shriram Ja-
gannathan for their assistance with Legate. We thank Seshu
Yamajala for his assistance in running the S3D simulation.
We thank Elliot Slaughter for his assistance in debugging
and running Regent programs. We thank Mario Di Renzo
and Caetano Melone for their assistance in running the HTR
simulation. We thank Zhihao Jia and Colin Unger for their as-
sistance in running FlexFlow. We thank Roshni Sahoo for her
assistance in developing formal optimization problem in Sec-
tion 3. We thank Danny Sleator and SamWestrick for sugges-
tions and pointers to related work around the string analysis
component of this work. We thank Wei Wu for discussions
about the PARSEC runtime system, and Cedric Augonnet for
discussions about the StarPU runtime system. We thank (in
no particular order) James Dong, AJ Root, Chris Gyurgyik,
Rubens Lacouture, Shiv Sundram, Scott Kovach and Olivia
Hsu for their discussions and feedback on this manuscript.
Rohan Yadav was supported by an NVIDIA Graduate Fel-
lowship, and part of this work was done while Rohan Yadav
was an intern at NVIDIA Research. This work was in part
supported by the National Science Foundation under Grant
CCF-2216964 and by Digital Futures at KTH Royal Institute
of Technology. This research used resources of the National
Energy Research Scientific Computing Center, a DOE Office
of Science User Facility supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231 using NERSC award ASCR-ERCAP0026353.

References
[1] [n. d.]. CANDLE | Exascale Deep Learning and Simulation Enabled

Precision Medicine for Cancer — wordpress.cels.anl.gov. https://
wordpress.cels.anl.gov/candle/. [Accessed 06-05-2024].

[2] Emmanuel Agullo, Olivier Aumage, Mathieu Faverge, Nathalie Fur-
mento, Florent Pruvost, Marc Sergent, and Samuel Paul Thibault. 2017.
Achieving High Performance on Supercomputers with a Sequential
Task-based Programming Model. IEEE Transactions on Parallel and
Distributed Systems (2017), 1–1. https://doi.org/10.1109/TPDS.2017.
2766064

[3] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-
André Wacrenier. 2011. StarPU: a unified platform for task sched-
uling on heterogeneous multicore architectures. Concurrency and
Computation: Practice and Experience 23, 2 (2011), 187–198. https:
//doi.org/10.1002/cpe.1631

[4] Ray Authors. 2024. Ray Compiled Graph Documentation. Technical
Report. AnyScale. https://docs.ray.io/en/latest/ray-core/ray-dag.html

[5] Lorena Barba and Gilbert Forsyth. 2019. CFD Python: the 12 steps
to Navier-Stokes equations. Journal of Open Source Education 2, 16
(2019), 21. https://doi.org/10.21105/jose.00021

[6] Paul Barham, Aakanksha Chowdhery, Jeff Dean, Sanjay Ghemawat,
Steven Hand, Dan Hurt, Michael Isard, Hyeontaek Lim, Ruoming Pang,
Sudip Roy, Brennan Saeta, Parker Schuh, Ryan Sepassi, Laurent El
Shafey, ChandramohanA. Thekkath, and YonghuiWu. 2022. Pathways:
Asynchronous Distributed Dataflow for ML. arXiv:2203.12533 [cs.DC]

[7] Michael Bauer and Michael Garland. 2019. Legate NumPy: accel-
erated and distributed array computing. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis (Denver, Colorado) (SC ’19). Association for
Computing Machinery, New York, NY, USA, Article 23, 23 pages.
https://doi.org/10.1145/3295500.3356175

[8] Michael Bauer, Wonchan Lee, Elliott Slaughter, Zhihao Jia, Mario
Di Renzo, Manolis Papadakis, Galen Shipman, Patrick McCormick,
Michael Garland, and Alex Aiken. 2021. Scaling implicit parallelism via
dynamic control replication. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Virtual
Event, Republic of Korea) (PPoPP ’21). Association for Computing
Machinery, New York, NY, USA, 105–118. https://doi.org/10.1145/
3437801.3441587

[9] Michael Bauer, Elliott Slaughter, Sean Treichler, Wonchan Lee, Michael
Garland, and Alex Aiken. 2023. Visibility Algorithms for Dynamic
Dependence Analysis and Distributed Coherence. In Proceedings of the
28th ACM SIGPLAN Annual Symposium on Principles and Practice of
Parallel Programming (Montreal, QC, Canada) (PPoPP ’23). Association
for Computing Machinery, New York, NY, USA, 218–231. https://doi.
org/10.1145/3572848.3577515

[10] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012.
Legion: expressing locality and independence with logical regions.
In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (Salt Lake City, Utah)
(SC ’12). IEEE Computer Society Press, Washington, DC, USA, Article
66, 11 pages.

[11] Dan Bonachea and Paul H. Hargrove. 2018. GASNet-EX: A
High-Performance, Portable Communication Library for Exascale.
In Proceedings of Languages and Compilers for Parallel Comput-
ing (LCPC’18) (Lecture Notes in Computer Science, Vol. 11882).
Springer International Publishing. https://doi.org/10.25344/S4QP4W
https://doi.org/10.25344/S4QP4W.

[12] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Her-
ault, Pierre Lemarinier, and Jack Dongarra. 2011. DAGuE: A Generic
Distributed DAG Engine for High Performance Computing. In 2011
IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum. 1151–1158. https://doi.org/10.1109/IPDPS.
2011.281

[13] Pi-Yueh Chuang. 2021. TorchSWE: GPU shallow-water equation solver.
[14] Modan K. Das and Ho-Kwok Dai. 2007. A survey of DNA motif

finding algorithms. BMC Bioinformatics 8, 7 (01 Nov 2007), S21. https:
//doi.org/10.1186/1471-2105-8-S7-S21

[15] Dask. 2024. Dask Computation Stages. Technical Report. Dask. https:
//docs.dask.org/en/stable/phases-of-computation.html

[16] Dask Development Team. 2016. Dask: Library for dynamic task sched-
uling. http://dask.pydata.org

[17] Mario Di Renzo, Lin Fu, and Javier Urzay. 2020. HTR solver: An open-
source exascale-oriented task-based multi-GPU high-order code for
hypersonic aerothermodynamics. Computer Physics Communications
255 (2020), 107262. https://doi.org/10.1016/j.cpc.2020.107262

[18] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Man-
delin, Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare, Boris
Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Re-
itmaier, Michael Bebenita, Mason Chang, and Michael Franz. 2009.
Trace-based just-in-time type specialization for dynamic languages.
In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Dublin, Ireland) (PLDI ’09). As-
sociation for Computing Machinery, New York, NY, USA, 465–478.

https://wordpress.cels.anl.gov/candle/
https://wordpress.cels.anl.gov/candle/
https://doi.org/10.1109/TPDS.2017.2766064
https://doi.org/10.1109/TPDS.2017.2766064
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1002/cpe.1631
https://docs.ray.io/en/latest/ray-core/ray-dag.html
https://doi.org/10.21105/jose.00021
https://arxiv.org/abs/2203.12533
https://doi.org/10.1145/3295500.3356175
https://doi.org/10.1145/3437801.3441587
https://doi.org/10.1145/3437801.3441587
https://doi.org/10.1145/3572848.3577515
https://doi.org/10.1145/3572848.3577515
https://doi.org/10.25344/S4QP4W
https://doi.org/10.1109/IPDPS.2011.281
https://doi.org/10.1109/IPDPS.2011.281
https://doi.org/10.1186/1471-2105-8-S7-S21
https://doi.org/10.1186/1471-2105-8-S7-S21
https://docs.dask.org/en/stable/phases-of-computation.html
https://docs.dask.org/en/stable/phases-of-computation.html
http://dask.pydata.org
https://doi.org/10.1016/j.cpc.2020.107262

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Rohan Yadav et al.

https://doi.org/10.1145/1542476.1542528
[19] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David

Mandelin, Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare,
Boris Zbarsky, Jason Orendorff, Jesse Ruderman, EdwinW. Smith, Rick
Reitmaier, Michael Bebenita, Mason Chang, and Michael Franz. 2009.
Trace-based just-in-time type specialization for dynamic languages.
SIGPLAN Not. 44, 6 (June 2009), 465–478. https://doi.org/10.1145/
1543135.1542528

[20] Urs Hölzle and David Ungar. 1996. Reconciling responsiveness with
performance in pure object-oriented languages. ACM Trans. Program.
Lang. Syst. 18, 4 (jul 1996), 355–400. https://doi.org/10.1145/233561.
233562

[21] Reazul Hoque, Thomas Herault, George Bosilca, and Jack Dongarra.
2017. Dynamic task discovery in PaRSEC: a data-flow task-based run-
time. In Proceedings of the 8th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems (Denver, Colorado) (ScalA ’17). As-
sociation for Computing Machinery, New York, NY, USA, Article 6,
8 pages. https://doi.org/10.1145/3148226.3148233

[22] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2018. Beyond Data and
Model Parallelism for Deep Neural Networks. CoRR abs/1807.05358
(2018). arXiv:1807.05358 http://arxiv.org/abs/1807.05358

[23] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo
Park. 2001. Linear-Time Longest-Common-Prefix Computation in
Suffix Arrays and Its Applications. In Combinatorial Pattern Matching,
Amihood Amir (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
181–192.

[24] Wonchan Lee, Elliott Slaughter, Michael Bauer, Sean Treichler, Todd
Warszawski, Michael Garland, and Alex Aiken. 2018. Dynamic trac-
ing: memoization of task graphs for dynamic task-based runtimes.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis (Dallas, Texas) (SC ’18).
IEEE Press, Article 34, 13 pages.

[25] Omid Mashayekhi, Hang Qu, Chinmayee Shah, and Philip Levis. 2017.
Execution templates: caching control plane decisions for strong scaling
of data analytics. In Proceedings of the 2017 USENIX Conference on
Usenix Annual Technical Conference (Santa Clara, CA, USA) (USENIX
ATC ’17). USENIX Association, USA, 513–526.

[26] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, William Paul, Michael I. Jordan, and Ion
Stoica. 2017. Ray: A Distributed Framework for Emerging AI Ap-
plications. CoRR abs/1712.05889 (2017). arXiv:1712.05889 http:
//arxiv.org/abs/1712.05889

[27] NVIDIA. 2024. CUDA Graph Documentation. Technical Report.
NVIDIA. https://docs.nvidia.com/cuda/cuda-runtime-api/group_
_CUDART__GRAPH.html

[28] Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The java
hotspotTM server compiler. In Proceedings of the 2001 Symposium on
JavaTM Virtual Machine Research and Technology Symposium - Volume
1 (Monterey, California) (JVM’01). USENIX Association, USA, 1.

[29] Mahesh Ravishankar, Roshan Dathathri, Venmugil Elango, Louis-
Noël Pouchet, J. Ramanujam, Atanas Rountev, and P. Sadayappan.
2015. Distributed memory code generation for mixed Irregular/Reg-
ular computations. SIGPLAN Not. 50, 8 (jan 2015), 65–75. https:
//doi.org/10.1145/2858788.2688515

[30] Mahesh Ravishankar, John Eisenlohr, Louis-Noel Pouchet, J. Ramanu-
jam, Atanas Rountev, and P. Sadayappan. 2012. Code generation for
parallel execution of a class of irregular loops on distributed mem-
ory systems. In SC ’12: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis. 1–11.
https://doi.org/10.1109/SC.2012.30

[31] E. Rotenberg, S. Bennett, and J.E. Smith. 1996. Trace cache: a low la-
tency approach to high bandwidth instruction fetching. In Proceedings
of the 29th Annual IEEE/ACM International Symposium on Microarchi-
tecture. MICRO 29. 24–34. https://doi.org/10.1109/MICRO.1996.566447

[32] Saul Schleimer, Daniel S.Wilkerson, andAlex Aiken. 2003. Winnowing:
local algorithms for document fingerprinting. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data
(San Diego, California) (SIGMOD ’03). Association for Computing
Machinery, New York, NY, USA, 76–85. https://doi.org/10.1145/872757.
872770

[33] Zachary D. Sisco, Jonathan Balkind, Timothy Sherwood, and Ben
Hardekopf. 2023. Loop Rerolling for Hardware Decompilation. Proc.
ACM Program. Lang. 7, PLDI, Article 123 (jun 2023), 23 pages. https:
//doi.org/10.1145/3591237

[34] Elliott Slaughter, Wei Wu, Yuankun Fu, Legend Brandenburg, Nico-
lai Garcia, Wilhem Kautz, Emily Marx, Kaleb S. Morris, Qinglei Cao,
George Bosilca, Seema Mirchandaney, Wonchan Leek, Sean Treichlerk,
Patrick McCormick, and Alex Aiken. 2020. Task Bench: A Parame-
terized Benchmark for Evaluating Parallel Runtime Performance. In
SC20: International Conference for High Performance Computing, Net-
working, Storage and Analysis. 1–15. https://doi.org/10.1109/SC41405.
2020.00066

[35] James A. Storer and Thomas G. Szymanski. 1982. Data compression
via textual substitution. J. ACM 29, 4 (oct 1982), 928–951. https:
//doi.org/10.1145/322344.322346

[36] Jens Stoye and Dan Gusfield. 2002. Simple and flexible detection of
contiguous repeats using a suffix tree. Theoretical Computer Science
270, 1 (2002), 843–856. https://doi.org/10.1016/S0304-3975(01)00121-9

[37] Sean Treichler, Michael Bauer, Ankit Bhagatwala, Giulio Borghesi, Ra-
manan Sankaran, Hemanth Kolla, Patrick Mccormick, Elliott Slaughter,
Wonchan Lee, Alex Aiken, and Jacqueline H. Chen. 2017. S3D-Legion:
An Exascale Software for Direct Numerical Simulation of Turbulent
Combustion with Complex Multicomponent Chemistry. (11 2017).
https://doi.org/10.1201/b21930-12

[38] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos
Efrain Quintero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati,
Pat McCormick, Jamaludin Mohd-Yusof, Xi Luo, Dheevatsa Mudigere,
Jongsoo Park, Misha Smelyanskiy, and Alex Aiken. 2022. Unity: Ac-
celerating DNN Training Through Joint Optimization of Algebraic
Transformations and Parallelization. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22). USENIX Asso-
ciation, Carlsbad, CA, 267–284. https://www.usenix.org/conference/
osdi22/presentation/unger

[39] Welch. 1984. A Technique for High-Performance Data Compression.
Computer 17, 6 (1984), 8–19. https://doi.org/10.1109/MC.1984.1659158

[40] Wikipedia. 2024. Ruler function — Wikipedia, The Free Encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Ruler%20function&
oldid=1193825609. [Online; accessed 02-May-2024].

[41] Rohan Yadav, Wonchan Lee, Melih Elibol, Manolis Papadakis, Taylor
Lee-Patti, Michael Garland, Alex Aiken, Fredrik Kjolstad, and Michael
Bauer. 2023. Legate Sparse: Distributed Sparse Computing in Python.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Denver, CO, USA) (SC
’23). Association for Computing Machinery, New York, NY, USA, Arti-
cle 13, 13 pages. https://doi.org/10.1145/3581784.3607033

[42] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2012. Resilient distributed datasets: a fault-tolerant ab-
straction for in-memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation
(San Jose, CA) (NSDI’12). USENIX Association, USA, 2.

[43] Xiaotong Zhuang, Mauricio J. Serrano, Harold W. Cain, and Jong-Deok
Choi. 2006. Accurate, efficient, and adaptive calling context profiling. In
Proceedings of the 27th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (Ottawa, Ontario, Canada) (PLDI ’06).
Association for Computing Machinery, New York, NY, USA, 263–271.
https://doi.org/10.1145/1133981.1134012

[44] J. Ziv and A. Lempel. 1977. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory 23, 3 (1977),

https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1145/1543135.1542528
https://doi.org/10.1145/1543135.1542528
https://doi.org/10.1145/233561.233562
https://doi.org/10.1145/233561.233562
https://doi.org/10.1145/3148226.3148233
https://arxiv.org/abs/1807.05358
http://arxiv.org/abs/1807.05358
https://arxiv.org/abs/1712.05889
http://arxiv.org/abs/1712.05889
http://arxiv.org/abs/1712.05889
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html
https://doi.org/10.1145/2858788.2688515
https://doi.org/10.1145/2858788.2688515
https://doi.org/10.1109/SC.2012.30
https://doi.org/10.1109/MICRO.1996.566447
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/3591237
https://doi.org/10.1145/3591237
https://doi.org/10.1109/SC41405.2020.00066
https://doi.org/10.1109/SC41405.2020.00066
https://doi.org/10.1145/322344.322346
https://doi.org/10.1145/322344.322346
https://doi.org/10.1016/S0304-3975(01)00121-9
https://doi.org/10.1201/b21930-12
https://www.usenix.org/conference/osdi22/presentation/unger
https://www.usenix.org/conference/osdi22/presentation/unger
https://doi.org/10.1109/MC.1984.1659158
http://en.wikipedia.org/w/index.php?title=Ruler%20function&oldid=1193825609
http://en.wikipedia.org/w/index.php?title=Ruler%20function&oldid=1193825609
https://doi.org/10.1145/3581784.3607033
https://doi.org/10.1145/1133981.1134012

Automatic Tracing in Task-Based Runtime Systems ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

337–343. https://doi.org/10.1109/TIT.1977.1055714
[45] J. Ziv and A. Lempel. 1978. Compression of individual sequences via

variable-rate coding. IEEE Transactions on Information Theory 24, 5

(1978), 530–536. https://doi.org/10.1109/TIT.1978.1055934

https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1978.1055934

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Rohan Yadav et al.

A Artifact Appendix
A.1 Abstract
This artifact presents the computational artifact of Apophe-
nia, a system that automatically traces Legion applications.
This artifact is supported by an implementation of Apophe-
nia within the Legion runtime system and a standalone imple-
mentation of the repeated sub-strings algorithm as described
in the paper. We also provide artifacts for the subset of our
benchmarks that are open-source.
We evaluated Apophenia on the Eos and Perlmutter su-

percomputers. Each node of Eos is an NVIDIA DGX H100,
containing 8 H100 GPUs with 80 GB of memory and a 112
core Intel Xeon Platinum. Each node of Perlmutter contains
4 NVIDIA A100 GPUs with 40 GB of memory and a 64 core
AMD EPYC 7763. Nodes of Eos are connected with an Infini-
band interconnect, while Perlmutter uses a Slingshot inter-
connect. We compile Legion on Eos with the UCX network-
ing module, and use the GASNet-EX networking module on
Perlmutter.

A.2 Artifact check-list (meta-information)
• Program: A mixture of scientific and machine learning
applications.
• Compilation: C++ and CUDA compiler.
• Metrics: Average throughput.
• Publicly available?: Some aspects are publicly available,
others are closed source.
• Archived (provide DOI)?: Legion with Apophenia: https:
//doi.org/10.5281/zenodo.13900083.
Repeated Substrings: https://doi.org/10.5281/zenodo.13900514.
TorchSWE: https://doi.org/10.5281/zenodo.13900751.
FlexFlow: https://doi.org/10.5281/zenodo.13900858.

A.3 Description
A.3.1 How to access. The version of Legion with Apophe-
nia is available here. The standalone implementation of the
repeated substrings algorithm is available here. The ver-
sion of TorchSWE used for benchmarking is available here,
though executing it with Apophenia requires a currently
closed-source version of the Legate runtime and cuNumeric.
The version of FlexFlow used for benchmarking is available
here.

A.3.2 Hardware dependencies. Our experiments were
run on server-class machines with multiple GPUs per node.
While these are not necessary, the scaling and problem sizes
that fit on each node will differ on different setups.

A.3.3 Software dependencies. We run all our experi-
ments with Python 3.11. Aside from that, a standard super-
computer software stack (C++ compiler, CUDA installation,
MPI installation) is expected.

A.4 Installation
Apophenia can be built and run with a standard Legion
build, using the version of Legion from the artifact. The
exact parameters to build Legion depend on the machine
configuration. A sample Legion build for an Infiniband-based
cluster with NVIDIA GPUs would invoke:
cd Legion/language
USE_CUDA=1 CONDUIT=ibv ./scripts/setup_env.sh

Since FlexFlow is fully open-source, we also provide build
instructions. Using the provided version of Legion, FlexFlow
can be built and installed for an NVIDIA machine with
export FF_GPU_BACKEND="cuda"
conda create -n flexflow
source activate flexflow
conda install -c conda-forge cmake make pillow \

cmake-build-extension pybind11 numpy pandas \
keras-preprocessing onnx transformers>=4.31.0 \
sentencepiece einops

conda install -c pytorch pytorch torchvision torchaudio
conda install rust
pip3 install tensorflow notebook
cd FlexFlow
mkdir build
cd build
../config/config.linux
make -j

A.5 Experiment workflow
As a majority of our experiments are closed source, we do
not provide a script that can run the full experiment suite.
We do provide a command line that can be used to run the
FlexFlow benchmark. The given command line is intended
for SLURM based clusters, but additional configuration may
be required depending on SLURM setup.
srun -N <NODES> \
FlexFlow/build/examples/cpp/candle_uno/candle_uno \
--warmup 30 \
--batch-size 16384 \
-ll:gpu <GPUS-PER-NODE> \
-ll:fsize <GPU-MEM-IN-MBS> \
-ll:util 4 \
-ll:csize 30000 \
-ll:zsize 5000 \
-lg:enable_automatic_tracing \
-lg:auto_trace:min_trace_length 25 \
-lg:auto_trace:max_trace_length 200 \
-lg:auto_trace:batchsize 5000 \
-lg:auto_trace:identifier_algorithm \

multi-scale \
-lg:auto_trace:multi_scale_factor 500 \
-lg:auto_trace:repeats_algorithm \

quick_matching_of_substrings \
-lg:inline_transitive_reduction \
-lg:window 30000

https://doi.org/10.5281/zenodo.13900083
https://doi.org/10.5281/zenodo.13900083
https://doi.org/10.5281/zenodo.13900514
https://doi.org/10.5281/zenodo.13900751
https://doi.org/10.5281/zenodo.13900858
https://gitlab.com/StanfordLegion/legion/-/tree/automatic-tracing/
https://github.com/david-broman/matching-substrings
https://github.com/rohany/TorchSWE/tree/automatic-tracing
https://github.com/rohany/FlexFlow/tree/automatic-tracing

Automatic Tracing in Task-Based Runtime Systems ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

A.6 Evaluation and expected results
We expect that when used on our benchmark applications,
Apophenia finds and replays traces. On problem sizes that
are Legion runtime-limited, this should result in speedup.

A.7 Experiment customization
Apophenia exposes several runtime configurations that are
accepted by every Legion application for customizing the
behavior.

1. -lg:enable_automatic_tracing: enable automatic
tracing.

2. -lg:auto_trace:min_trace_length <N>: minimum
length trace to consider.

3. -lg:auto_trace:max_trace_length <N>: maximum
length trace to replay.

4. -lg:auto_trace:batchsize <N>: size of the task his-
tory buffer.

5. -lg:auto_trace:multi_scale_factor <N>: minimum
size of the adaptive analysis.

	Abstract
	1 Introduction
	2 Motivating Example
	3 What Are Good Traces?
	4 Trace Identification
	4.1 A Stream of Tokens
	4.2 Finding Traces With High Coverage
	4.3 Recognizing and Replaying Candidate Traces
	4.4 Achieving Responsiveness and Quality

	5 Implementation Discussion
	5.1 Distributing the Analysis
	5.2 (The Lack of) Speculation

	6 Evaluation
	6.1 Weak Scaling
	6.2 Strong-Scaling
	6.3 Overheads of Apophenia
	6.4 Trace Search

	7 Related Work
	8 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization

