
Composing Distributed Computations Through Task
and Kernel Fusion

Rohan Yadav
Stanford University

Stanford, California, USA
rohany@cs.stanford.edu

Shiv Sundram
Stanford University

Stanford, California, USA
shiv1@stanford.edu

Wonchan Lee
NVIDIA

Santa Clara, California, USA
wonchanl@nvidia.com

Michael Garland
NVIDIA

Santa Clara, California, USA
mgarland@nvidia.com

Michael Bauer
NVIDIA

Santa Clara, California, USA
mbauer@nvidia.com

Alex Aiken
Stanford University

Stanford, California, USA
aiken@cs.stanford.edu

Fredrik Kjolstad
Stanford University

Stanford, California, USA
kjolstad@cs.stanford.edu

Abstract
We introduce Diffuse, a system that dynamically performs
task and kernel fusion in distributed, task-based runtime
systems. The key component of Diffuse is an intermediate
representation of distributed computation that enables the
necessary analyses for the fusion of distributed tasks to be
performed in a scalable manner. We pair task fusion with a
JIT compiler to fuse together the kernels within fused tasks.
We show empirically that Diffuse’s intermediate represen-
tation is general enough to be a target for two real-world,
task-based libraries (cuPyNumeric and Legate Sparse), let-
ting Diffuse find optimization opportunities across function
and library boundaries. Diffuse accelerates unmodified ap-
plications developed by composing task-based libraries by
1.86x on average (geo-mean), and by between 0.93x–10.7x on
up to 128 GPUs. Diffuse also finds optimization opportunities
missed by the original application developers, enabling high-
level Python programs to match or exceed the performance
of an explicitly parallel MPI library.

CCSConcepts: •Computingmethodologies→Distributed
programming languages.

Keywords: Distributed Programming; Composable Software

ACM Reference Format:
Rohan Yadav, Shiv Sundram,Wonchan Lee,Michael Garland,Michael
Bauer, Alex Aiken, and Fredrik Kjolstad. 2025. Composing Dis-
tributed Computations Through Task and Kernel Fusion. In Pro-
ceedings of the 30th ACM International Conference on Architectural

This work is licensed under a Creative Commons
Attribution International 4.0 License.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0698-1/25/03
https://doi.org/10.1145/3669940.3707216

Support for Programming Languages and Operating Systems, Vol-
ume 1 (ASPLOS ’25), March 30-April 3, 2025, Rotterdam, Netherlands.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3669940.
3707216

1 Introduction
A modern trend in distributed programming is to develop
drop-in implementations of popular sequential libraries like
NumPy or SciPy that automatically scale to distributed ma-
chines while maintaining the semantics of the original li-
brary [12, 13, 30, 60]. To achieve distribution, these drop-in
replacement libraries are implemented by translation to a
distributed task-based runtime system [7, 11, 15, 26, 41]. Li-
braries map computations to a stream of tasks issued to the
runtime, and map data on to runtime-managed distributed
collections. Tasks are user-defined functions, whose bodies
we call kernels, that operate on subsets of the distributed
collections. The runtime is responsible for extracting paral-
lelism from the input sequence of tasks and for computing
the synchronization and communication required between
tasks. This architecture enables distributed libraries to be
built independently and then composed freely, as the run-
time system is responsible for scheduling parallel work and
maintaining coherence of distributed data.

However, the same abstractions that yield important com-
position properties internally and externally to these dis-
tributed libraries can result in degraded end-to-end perfor-
mance. The task decomposition of library operations results
in tasks that may be optimized individually but can have poor
data locality and allocate much more temporary data than
a different program organization that breaks down the ab-
straction boundaries by fusing tasks together both within the
operations of a particular library and across library bound-
aries. As the task-based runtime system is issued a stream
of tasks after library abstraction boundaries have been tra-
versed, the runtime has the opportunity to fuse the tasks

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3669940.3707216
https://doi.org/10.1145/3669940.3707216
https://doi.org/10.1145/3669940.3707216

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Rohan Yadav et al.

from different libraries together, which in turn enables the fu-
sion of the kernels of nested loops within fused tasks. Fusion
by the task-based runtime allows for these optimizations to
be performed without being limited to the semantics of any
particular task-based library.

Prior works such as Weld [44] and Split Annotations [45]
have developed techniques to perform fusion across library
boundaries, but only for sharedmemory libraries. Distributed
memory complicates program analyses, as distributed data
requires communication when shared data is written to and
read from by different nodes. For example, a sequence of
element-wise operations on a pair of distributed arrays may
or may not be fusible depending on whether the arrays are
aliases of the same distributed data. We do not consider the
problem of automatic parallelization [2, 5, 19, 39, 57]; the
task-based programs we consider are already (implicitly) par-
allel. We focus on the efficient composition of independently-
written parallel, distributed programs.

We present Diffuse, a system that dynamically performs
task and kernel fusion for distributed, task-based runtime sys-
tems, transparently achieving optimizations found in hand-
tuned programs. Diffuse reasons over a task-based IR of dis-
tributed computation, modeling computation as a sequence
of tasks operating on partitioned data (Section 3). Diffuse’s IR
is scale-free, meaning that the size of the IR and analyses on
it are independent of the size of the target machine. Diffuse
uses this IR to perform a dynamic dependence analysis to
fuse tasks in a distributed-memory setting (Section 4). Dif-
fuse pairs task fusion with a JIT compiler based on MLIR [38]
that fuses and optimizes kernels within dynamically fused
tasks, enabling data reuse across independent tasks (Sec-
tion 6). By analyzing a task-based IR, Diffuse’s optimizations
are not tied to the semantics of any particular library.
We implement Diffuse as a middle layer between high-

level task-based libraries and the low-level Legion runtime
system [15]. To demonstrate Diffuse, we modify the imple-
mentations of the distributed libraries cuPyNumeric [12]
and Legate Sparse [60] to target Diffuse’s IR, and to expose
their task implementations in MLIR for Diffuse’s compiler to
process. Diffuse then performs dynamic analyses to fuse the
tasks and kernels issued by these libraries before forward-
ing the optimized tasks to Legion. As a result, programmers
using cuPyNumeric and Legate Sparse benefit from Diffuse
without modifying their applications.

To evaluate Diffuse, we apply it to micro-benchmarks and
several full scientific computing applications developed in
cuPyNumeric and Legate Sparse, including sparse Krylov
solvers and physical simulations. We compare against the
standard implementations of cuPyNumeric and Legate Sparse
and show that Diffuse achieves 1.86x speedup on average
(geo-mean) over unmodified applications on up to 128 GPUs.
We additionally compare against the high-performance MPI-
based PETSc [8] library and show that Diffuse enables natu-
rally written NumPy and SciPy Sparse programs to match or

1 import cunumeric as np

2 grid = np.random.rand((N+2,N+2))

3 # Create multiple aliasing views

4 # of the distributed grid array.

5 center = grid[1:-1, 1:-1]

6 north = grid[0:-2, 1:-1]

7 east = grid[1:-1, 2:]

8 west = grid[1:-1, 0:-2]

9 south = grid [2: , 1:-1]

10 for i in range(niters):

11 avg = center + north + \

12 east + west + south

13 work = 0.2 * avg

14 center [:] = work

(a) cuPyNumeric source code.

(1,0) (1,1) (1,3)(1,2)

(0,0) (0,1) (0,3)(0,2)

(3,0) (3,1) (3,3)(3,2)

(2,0) (2,1) (2,3)(2,2)

(1,1) (1,2)

(0,1) (0,2)

(1,0) (1,1)

(2,0) (2,1)

west

south

east

north

(3,1) (3,2)

(2,1) (2,2)

(1,3)(1,2)

(2,3)(2,2)

grid center

(b) 4-node execution, colors de-
note cells held by each node. Dot-
ted lines denote communication.

1 # ADD , MULT and COPY are in

2 # cuNumeric 's implementation.

3 ALLOC ARRAY t1

4 ADD(center , north , t1)

5 ALLOC ARRAY t2

6 ADD(t1, east , t2)

7 ALLOC ARRAY t3

8 ADD(t2, west , t3)

9 ALLOC ARRAY avg

10 ADD(t3, south , avg)

11 ALLOC ARRAY work

12 MULT (0.2, avg , work)

13 COPY(work , center)

(c) Stream of tasks and alloca-
tions issued by the main loop.

1 # FUSED_ADD_MULT is a new

2 # task generated by Diffuse.

3 ALLOC ARRAY work

4 FUSED_ADD_MULT(

5 center ,

6 north ,

7 east ,

8 west ,

9 south ,

10 0.2,

11 work

12)

13 COPY(work , center)

(d) Operation stream after Dif-
fuse’s optimization.

1 # ADD , MULT and COPY are

2 # elementwise operators.

3 def ADD(a, b, c):

4 for i, j in a:

5 c[i,j] = a[i,j] + b[i,j]

6 def MULT(s, a, b):

7 for i, j in a:

8 b[i,j] = s * a[i,j]

9 def COPY(a, b):

10 for i, j in a:

11 b[i,j] = a[i,j]

(e) Tasks invoked during stan-
dard execution.

1 # FUSED_ADD_MULT performs

2 # the scaled five -way add.

3 def FUSED_ADD_MULT(

4 a, b, c, d, e, s, out

5):

6 for i, j in a:

7 out[i,j] = s * (

8 a[i,j] + b[i,j]

9 + c[i,j] + d[i,j]

10 + e[i,j])

(f) Fused task generated by Dif-
fuse.

Figure 1. Execution example of Diffuse on a distributed,
multi-GPU cuPyNumeric 5-point stencil application.

exceed the performance of PETSc (1.4x geo-mean speedup).
Finally, we show that Diffuse is able to find fusion and op-
timization opportunities missed by the original application
developers, achieving 1.23x speedup on average (geo-mean)
over already hand-optimized code.

2 Motivating Example
Figure 1 shows how Diffuse optimizes the cuPyNumeric

program in Figure 1a that performs a 5-point stencil compu-
tation. The cuPyNumeric library is a drop-in replacement
for NumPy [33] that scales unmodified NumPy programs

Composing Distributed Computations Through Task and Kernel Fusion ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

to distributed machines by targeting the Legion [15] run-
time system. cuPyNumeric maps NumPy arrays to Legion’s
regions, and maps NumPy functions to task launches oper-
ating on regions that are partitioned across the machine. As
the cuPyNumeric program executes, it issues a stream of
tasks to the Legion runtime, which dynamically discovers
the necessary communication and synchronization required
to execute the tasks on the target machine. The program
execution on a four-by-four grid with four nodes is visual-
ized in Figure 1b, where each node owns an element of each
aliasing view of the grid array. The dotted arrows repre-
sent the communication required to propagate updates to
the center array to the other aliasing views of grid. Fig-
ure 1c is a simplified representation of the task stream that
cuPyNumeric issues during execution of the inner loop (lines
10–14 of Figure 1a), and Figure 1e contains pseudocode for
each of the task implementations. This stream of operations
creates multiple temporary distributed arrays for the results
of individual operations, and separate tasks for each corre-
sponding addition and multiplication. The combination of
temporary arrays and separate tasks of loops is an ineffi-
cient execution strategy. Diffuse speeds this program up by
four times by creating a new fused task that computes the
work array (lines 11-13) in a single operation and removes
the temporary arrays, including avg, resulting in the stream
of operations in Figure 1d and the generated fused task in
Figure 1f. Interestingly, Diffuse does not fuse the task that
performs center[:] = work (line 14 of Figure 1a).
To understand these decisions, we must introduce the

distributed aspect of the tasks and data collections in Fig-
ure 1c. Each task in Figure 1c actually represents a group of
parallel tasks launched over partitioned arrays, where each
parallel task operates on a subset of the partitioned data.
Dependencies and communication that arise from parallel
tasks operating on the same distributed data affect when
fusion is possible. In our example, the arrays center, north,
east, west, and south are aliasing views of the array grid,
meaning that they share logical array entries. Because these
distributed arrays alias, Diffuse does not fuse the task group
that computes center[:] = work into the task group that
reads from north, east, west and south, as the fusion would
create a task group that concurrently reads and writes to
aliasing data. Similarly, the center[:] = work task group
issued at iteration 𝑖 cannot be fused into the avg computation
(line 11 of Figure 1a) at iteration 𝑖 + 1 because communica-
tion is required to propagate updates to center. To reason
about distributed computations over partitioned data, we
develop a scale-free intermediate representation (Section 3)
that models tasking runtime systems which support aliased
views of distributed data. We then develop a dynamic analy-
sis for task fusion (Section 4) that reasons about dynamically
known communication patterns in distributed computations
to fuse groups of parallel tasks.

Syntax

Unique ID 𝑖𝑑

Point 𝑝 ::= (Z, . . .)

Store 𝑆 ::= Store(𝑖𝑑, 𝑝)
Projection Function 𝐹 ::= Projection(𝑖𝑑, Point → Point)

Partition 𝑃 ::= None | Tiling(𝑝, 𝑝, 𝐹)

Privilege 𝑃𝑟 ::= Read (R) | Write (W) |
Reduce (Rd) | Read-Write (RW)

Index Task 𝑇 ::= IndexTask(𝑝, (𝑆, 𝑃, 𝑃𝑟) list)
Task Window 𝑊 ::= 𝑇 stream

Constructs for Reasoning

Sub-Store 𝑆𝑝 ≜ SubStore(𝑆, 𝑃, 𝑝)
Point Task 𝑇𝑝 ≜ PointTask((𝑆𝑝 , 𝑃𝑟) list)

(a) Diffuse’s intermediate representation.

Store Partition

Sub-stores

Data Model Computational Model

Index Task T ((3,)),

Domain Store, Partition

Point Tasks T0 () T1 () T2 ()
Shape (3,3)

(b) Relationships between components of Diffuse’s IR.

Figure 2. Diffuse’s IR exposes a distributed data model and
a model for distributed computation on distributed data.

3 Intermediate Representation
The first contribution of Diffuse is an IR that enables scal-
able fusion analyses through a scale-free representation of
distributed programs, meaning that the size of the repre-
sentation is independent of the total number of processors
in the target system. Diffuse’s IR is an abstraction over the
collections of concrete tasks and distributed data structures
of a lower-level task-based programming system, like Le-
gion, that usually have scale-aware representations. We have
modified cuPyNumeric and Legate Sparse to dynamically
generate programs in Diffuse’s IR instead of targeting Legion
directly. Diffuse’s IR, presented in Figure 2, is designed to
make it inexpensive to perform the analyses required for
fusion, while still being able to express sophisticated compu-
tations. The IR contains a data model to represent distributed
data, and a computational model to define distributed com-
putations over distributed data. The syntax of the IR is in
Figure 2a, and a visualization of the IR’s structure is shown
in Figure 2b.

3.1 Data Model
Diffuse represents distributed data as stores, which are dis-
tributed arrays. Each store has a unique ID and a rectangular
shape defined by a tuple of non-negative integers, represent-
ing the upper bound of each dimension of the store. We refer

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Rohan Yadav et al.

to these rectangular shapes as domains, which are also used
to describe the decomposition of data and compute across
processors. Stores are partitioned across the target machine
into sub-stores, which are subsets of a store.

Partitions of stores are first-class objects in Diffuse. A par-
tition is a mapping from points in a domain to sub-stores,
where each point in the domain represents a processor. This
mapping is represented by Diffuse in a structured manner,
breaking different kinds of mappings into different syntac-
tic groups. For simplicity of presentation, we consider two
kinds of partitions, sufficient to explore the analyses used in
Diffuse. Our implementation supports more partition kinds
with no additional technical insights. The main requirement
on partitions is that two partitions of the same kind can be
checked for inequality without examining each sub-store
within each partition. This requirement is critical for a scal-
able analysis, as discussed in Section 4.
The first partition kind None represents the replication

of a store, where all points in the partition’s domain are
mapped to the entire store. The second partition kind Tiling
represents an 𝑛-dimensional affine tiling of a store. A Tiling
contains an 𝑛-dimensional tile shape and an offset from the
origin, which are used to compute the sub-store associated
with each point in the partition’s domain. For example, Fig-
ure 3a shows a tiling of a two-dimensional store using 2x2
tiles over a 2x2 domain, while Figure 3b shows a row-based
tiling (i.e., tiles of size 1x4) of the same store over a 4x1 do-
main. Figure 3c shows a partition of a subset of the store
beginning at the point (1, 1). Tiling partitions also contain a
projection function that applies a transformation to each point
in the partition’s domain before computing the subset with
the tile size and offset. Projection functions enable Tiling
partitions to express aliased and replicated data. For exam-
ple, Figure 3d shows a vector tiled over a two-dimensional
domain by a projection function that discards the second
dimension of each point in the partition’s domain, resulting
in a partially aliased partition. The formula that defines the
sub-store bounds for each point of a Tiling partition is shown
in Figure 3e. The representations of None and Tiling parti-
tions are scale-free as the mapping of points to sub-stores
is implicit in the partition, rather than explicitly storing the
bounds of each sub-store in the partition.
To reason about the sub-store referenced by each point

of a partition, we include an explicit SubStore(𝑆, 𝑃, 𝑝) con-
struct, representing the sub-store associated with point 𝑝 of
store 𝑆 using partition 𝑃 . As a short-hand, we let 𝑆 [𝑃, 𝑝] =
SubStore(𝑆, 𝑃, 𝑝), and refer to 𝑆 as the parent store of 𝑆 [𝑃, 𝑝].
The indices contained within the sub-store 𝑆 [𝑃, 𝑝] are di-
rectly computable in cases when 𝑃 is None or Tiling, but
may depend on runtime values held by stores when more
complex partitioning operators are introduced. Our later
definitions assume that it is possible to find the intersection
between two sub-stores, but our fusion algorithm in Section 4
does not require explicit computation of these intersections.

Domain = (2,2)

Tiling(
 shape=(2,2),
 offset=(0,0),
 proj=id,
)

(a) 2x2 tiling of
a 4x4 store.

Domain = (4,1)

Tiling(
 shape=(1,4),
 offset=(0,0),
 proj=id,
)

(b) 1x4 tiling of
a 4x4 store.

Domain = (2,2)

Tiling(
 shape=(1,1),
 offset=(1,1),
 proj=id,
)

(c) Offset 1x1
tiling of a 4x4
store.

Domain = (2,2)

Tiling(
 shape=(2,),
 offset=(0,),
 proj=fn p -> (p[0],),
)

(d) Aliased
blocking of a
size 4 store.

sub-store-bounds(Tiling(shape, offset, proj), 𝑝) =
[proj(𝑝) ∗ shape, proj(𝑝 + 1) ∗ shape) + offset

(e) Function that computes a bounding-box within the store
that a Tiling partition maps point 𝑝 to.

Figure 3. Examples of Tiling partitions. Partitions maps
points in the denoted domain to sub-stores. Each color refers
to the sub-store associated with a each point in the domain.

3.2 Computational Model
Diffuse models computation as a stream of index tasks [50]
issued in program order. An IndexTask(𝑑,𝐴) represents a
group of parallel tasks over points in a rectangular domain 𝑑 ,
referred to as the launch domain. An index task operates on
the list 𝐴 of stores, partitions, and privileges, using the de-
noted privilege to access the requested partition of each store.
We refer to each privilege with the abbreviations noted in
parentheses. Each parallel task within the group reads from,
writes to, or reduces to the sub-stores referred to by the
stores and partitions at each point. The parallel tasks within
an index task group may perform arbitrary computation
on argument stores that respects the requested privilege on
each argument store. For the simplicity of presentation, we
assume that the Reduce privilege refers to a single reduction
function being applied (such as addition). This representa-
tion is explicitly parallel as tasks are annotated with their
launch domain and partitions of distributed data structures.
However, the representation is scale-free as the size of the
representation is independent of the degree of parallelism —
only the symbolic size of the launch domain increases.
Similar to sub-stores, Diffuse’s IR has a notion of a point

task, which is one point in an index task’s launch domain.
Given an index task 𝑇 = IndexTask(𝑑,𝐴), let 𝑇 𝑝 be the
point task at point 𝑝 ∈ 𝑑 , operating on the list of stores
[(𝑆 [𝑃, 𝑝], 𝑝𝑟) : ∀ (𝑆, 𝑃, 𝑝𝑟) ∈ 𝐴]. Point tasks operate on the
sub-stores corresponding to their index point.
We define the predicates R(𝑇, (𝑆, 𝑃)), W(𝑇, (𝑆, 𝑃)) and

Rd(𝑇, (𝑆, 𝑃)) to be true when the task 𝑇 correspondingly
reads from, writes to, or reduces to the store 𝑆 using par-
tition 𝑃 . When (𝑆, 𝑃) has the privilege Read-Write, both
R(𝑇, (𝑆, 𝑃)) andW(𝑇, (𝑆, 𝑃)) are true.We also overload these

Composing Distributed Computations Through Task and Kernel Fusion ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

predicates for point tasks and sub-stores, where R(𝑇 𝑝 , 𝑆) is
true when point task 𝑇 𝑝 reads sub-store 𝑆 .
The dynamic semantics of Diffuse’s IR are defined by a

translation to an underlying task-based runtime system such
as Legion [15]. Stores are mapped to the distributed data
structures of the underlying runtime system, and Diffuse’s
first-class, structured partitions are mapped onto lower-level,
unstructured partitions. Finally, index tasks are translated
to tasks in the lower-level runtime system and issued for
execution.

4 Distributed Task Fusion
Diffuse leverages this IR to fuse distributed computations
through task fusion, enabling the fusion of kernels within
fused tasks (Section 6). Applications submit index tasks to
Diffuse, which buffers the tasks into a window of tasks to
be analyzed before submission to the underlying runtime.
A distributed task fusion algorithm finds a fusible prefix of
tasks in the window, and replaces the prefix with a fused task.
To be fusible, the prefix of index tasks must be executable in
sequencewithout cross-processor communication.We define
when communication may occur between index tasks and
describe when a sequence of index tasks is fusible. We then
give an algorithm for finding fusible index task sequences.

4.1 Dependencies
Dependencies are well-studied—we discuss how to define
dependencies between Diffuse’s index tasks. We adopt the
terminology of Aho et al. [3] when possible. Communication
is required between point tasks that have a dependence. The
dependence implies synchronization and potentially data
movement between the point tasks. A dependency exists
between two point tasks that access the same data unless
both tasks read from or reduce to the data with the same
associate and commutative operator. Recall that for an index
task 𝑇 , we refer to the point task at point 𝑝 as 𝑇 𝑝 . We define
dep(𝑇 𝑝

1 ,𝑇
𝑝′

2) to be true if 𝑇 𝑝′

2 depends on 𝑇 𝑝

1 .

Definition 1. Given point tasks𝑇 𝑝

1 ,𝑇
𝑝′

2 where index task𝑇1
is issued before index task 𝑇2, dep(𝑇 𝑝

1 ,𝑇
𝑝′

2) if ∃ sub-stores
𝑆, 𝑆 ′ with the same parent such that 𝑆 ∩ 𝑆 ′ ≠ ∅ and either

true-dep:
W(𝑇 𝑝

1 , 𝑆) ∧
(
R(𝑇 𝑝′

2 , 𝑆 ′) ∨W(𝑇 𝑝′

2 , 𝑆 ′) ∨ Rd(𝑇 𝑝′

2 , 𝑆 ′)
)

anti-dep:
R(𝑇 𝑝

1 , 𝑆) ∧
(
W(𝑇 𝑝′

2 , 𝑆 ′) ∨ Rd(𝑇 𝑝′

2 , 𝑆 ′)
)

reduction-dep:
Rd(𝑇 𝑝

1 , 𝑆) ∧
(
R(𝑇 𝑝′

2 , 𝑆 ′) ∨W(𝑇 𝑝′

2 , 𝑆 ′)
)
.

The dependencies between two index tasks 𝑇1 and 𝑇2 are
defined by the pairwise dependencies of their point tasks.
We capture these dependencies through a mapping between
the points of𝑇1 and𝑇2 that represents all of the point tasks in

3210

3210

T1

T2

(a) Point-wise dependence map:
D(𝑇1,𝑇2) [𝑝] = {𝑝}

3210

3210

T1

T2

(b) Stencil dependence map:
D(𝑇1,𝑇2) [𝑝] = {𝑝 − 1, 𝑝, 𝑝 + 1}

0

1

2

3

0

1

2

3

writes(T1, S) reads(T2, S)T1 T2

(c) D(𝑇1,𝑇2) of writing to, then reading from different partitions.

Figure 4. Visualization of dependence maps D(𝑇1,𝑇2).

𝑇2 that depend on point tasks in 𝑇1. Figure 4 shows different
dependence maps over the launch domain (4,).

Definition 2. For two index tasks 𝑇1 and 𝑇2, the depen-
dence map D(𝑇1,𝑇2) is a function of type domain(𝑇1) →
P(domain(𝑇2)), where ∀𝑝 ∈ domain(𝑇1),D(𝑇1,𝑇2) [𝑝] =

{𝑝′ ∈ domain(𝑇2) : dep(𝑇 𝑝

1 ,𝑇
𝑝′

2)}.

Having characterized the dependencies between two dis-
tributed index tasks 𝑇1 and 𝑇2, we can now define when
fusion of𝑇1 and𝑇2 is valid.𝑇1 and𝑇2 may be fused if the only
dependencies that exist between their point tasks are at most
point-wise, as the processor that executes each point task
does not need to communicate with any other processors.

Definition 3. Index tasks𝑇1 and𝑇2 are fusible if∀𝑝,D(𝑇1,𝑇2) [𝑝]
⊆ {𝑝}.

While Definition 3 admits a simple dependency structure,
there are several subtleties in what tasks are fusible and the
identification of fusible tasks. First, tasks with at most point-
wise dependencies is a broader set than just tasks that per-
form point-wise array operations. Point-wise dependencies
allow for simultaneous reads and writes of different stores
(Section 2) and multiple reductions to the same store. While
task dependencies may be at most point-wise, the computa-
tions within the tasks are arbitrary computations that may
be more complex than point-wise operations. Next, identi-
fying when at most point-wise dependencies exist between
two index tasks is non-trivial as tasks operate on arbitrarily
aliasing distributed data. We provide a framework to rea-
son about fusion in this setting, allowing for fusion to be
performed between components within and across libraries.

4.2 Fusion Algorithm
Anaïve algorithm for fusionmight fullymaterializeD(𝑇1,𝑇2)
to check that the condition in Definition 3 holds. However,
the computation required tomaterializeD(𝑇1,𝑇2) scales with
the number of processors. Even runtime systems like Legion

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Rohan Yadav et al.

do not materialize all of D, but instead leverage sophisti-
cated algorithms to compute only the portion of D needed
by each node [14]. However, a key insight in our work is that
to perform distributed task fusion effectively, our analysis
only needs to rule out cases where ∃ 𝑝,D(𝑇1,𝑇2) [𝑝] ⊈ {𝑝}.
Diffuse’s intermediate representation enables this analysis to
be performed in a scale-free manner. Our algorithm for dis-
tributed task fusion identifies when index tasks have point-
wise dependencies through greedy application of a set of
fusion constraints to identify a fusible prefix of the task win-
dow. We then build a fused task from the identified prefix.
We describe each of these components in turn, and then
sketch a correctness proof in the next section.

4.2.1 Fusion Constraints. Diffuse uses four constraints
to identify when communication may occur between dis-
tributed index tasks, i.e., when ∃𝑝,D(𝑇1,𝑇2) [𝑝] ⊈ {𝑝}. The
launch-domain-equivalence and true-dependence constraints
have been described at a high level by prior work [51]. We
generalize these constraints from prior work, present formal
definitions, and prove the correctness of our fusion algorithm.
Diffuse’s fusion constraints are sound, but not complete—for
example, leveraging application knowledge could result in fu-
sion opportunities that are out of scope for Diffuse. Figure 5
presents each of the constraints used by Diffuse by defining
when a provided sequence of tasks satisfy the constraint.

Launch Domain Equivalence. The first constraint checks
that the tasks to be fused have the same launch domain.
Applications targeting Diffuse may decompose their compu-
tations across different launch domains, and data movement
is generally required between different decompositions.

True Dependence.The next constraint utilizes the partitions
of stores and the privileges with which they are accessed to
identify communication between index tasks caused by read-
after-write dependencies. The true-dependence constraint
checks that if a task𝑇𝑖 writes to a store 𝑆 through partition 𝑃 ,
then it cannot be followed by a task𝑇𝑗 that reads or writes to
𝑆 with an aliasing partition 𝑃 ′, as𝑇𝑗 requires communication
of the updated values written by 𝑇𝑖 . However, operating
on the same partition 𝑃 is permitted, preserving point-wise
dependencies between 𝑇𝑖 and 𝑇𝑗 .
Our analysis relies on the ability to check whether two

partitions alias, which Diffuse does through a constant-time
equality check between partitions. Constant-time alias check-
ing is possible through the scale-free structure of Diffuse’s IR
and the syntactic grouping of partitions into structured kinds.
Diffuse does not need to compute pairwise intersections of
the sub-stores accessed by the point tasks of considered in-
dex tasks, a computation that scales quadratically with the
number of processors. Additionally, the alias analysis does
not depend on the structure of the partitions, as the con-
straints are defined without knowing the syntactic kinds of
each partition. Finally, this aliasing check is not too coarse,

launch-domain-equivalence([𝑇1, . . . ,𝑇𝑛]) =
∀𝑖, domain(𝑇𝑖) = domain(𝑇1)

true-dependence([𝑇1, . . . ,𝑇𝑛]) =
∀𝑇𝑖 s.t.W(𝑇𝑖 , (𝑆, 𝑃)),
�𝑇𝑗 s.t.

(
R(𝑇𝑗 , (𝑆, 𝑃 ′)) ∨W(𝑇𝑗 , (𝑆, 𝑃 ′))

)
∧ 𝑖 < 𝑗 ∧ 𝑃 ≠ 𝑃 ′

anti-dependence([𝑇1, . . . ,𝑇𝑛]) =
∀𝑇𝑖 s.t. R(𝑇𝑖 , (𝑆, 𝑃)),
�𝑇𝑗 s.t.W(𝑇𝑗 , (𝑆, 𝑃 ′)) ∧ 𝑖 < 𝑗 ∧ 𝑃 ≠ 𝑃 ′

reduction([𝑇1, . . . ,𝑇𝑛]) =
∀𝑇𝑖 s.t. Rd(𝑇𝑖 , (𝑆, 𝑃)),
�𝑇𝑗 s.t.

(
R(𝑇𝑗 , (𝑆, 𝑃 ′)) ∨W(𝑇𝑗 , (𝑆, 𝑃 ′))

)
∧ 𝑖 ≠ 𝑗

Figure 5. Fusion constraints employed by Diffuse to identify
potential communication between index tasks.

since partitions of different syntactic kinds nearly always
alias in practice.

Anti-Dependence. The anti-dependence constraint ensures
that D does not contain write-after-read dependencies. The
constraint enforces that if a task 𝑇 reads a store 𝑆 , then any
tasks that write to 𝑆 must write to the same distributed view
as the read to be fused with 𝑇 . Thus, a fused task may read
from multiple different distributed views of a store (like the
offset views of the stencil computation in Figure 1a), but
then cannot write to any of the views, as such an operation
would require communication of the written data.

Reduction. The reduction constraint makes sure that view-
ing a partially reduced value is not allowed. It does not permit
a task that reads from or writes to a store to be fused with a
task performing a reduction to any view of the same store.

4.2.2 Fused Task Construction. Our fusion algorithm
greedily applies the fusion constraints on the input task win-
dow to find its longest fusible prefix. The true-dependence
and anti-dependence constraints are verified through a for-
wards dataflow analysis on the task window. The analyses
iterate through the candidate prefix of tasks, and track the
effects that each task applies to its argument stores. Once a
suitable prefix of the task window has been identified, Dif-
fuse builds a fused task that has all store arguments and
executes the same computation as the identified prefix of
tasks. The fused task’s store arguments are constructed by
reading all stores read by tasks in the prefix, and similarly
for the written to and reduced to stores. Stores that are both
read from and written to are promoted to the Read-Write
privilege. Diffuse constructs the body of the fused task by
composing the bodies of each task in the prefix in program
order—we further discuss this process in Section 6.

4.3 Proof of Correctness
We now show that our algorithm correctly fuses sequences
of distributed index tasks. We prove the following statement:

Composing Distributed Computations Through Task and Kernel Fusion ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Theorem 1. Given a window of tasks [𝑇1, . . . ,𝑇𝑛], our task
fusion algorithm identifies a prefix [𝑇1, . . . ,𝑇𝑓] and produces
a fused task 𝐹 such that

1. [𝑇1, . . . ,𝑇𝑓] are fusible, and
2. 𝐹 preserves all dependencies of the task sequence

[𝑇1, . . . ,𝑇𝑓].

We provide a proof sketch for each component of the
theorem. To prove that [𝑇1, . . . ,𝑇𝑓] are fusible, we must
show that for each pair of tasks 𝑇𝑖 ,𝑇𝑗 , 𝑖 < 𝑗 in [𝑇1, . . . ,𝑇𝑓],
∀ 𝑝, D(𝑇𝑖 ,𝑇𝑗) [𝑝] ⊆ {𝑝}. The launch-domain-equivalence
constraint ensures that the dependence map is between
points of the same dimensionality. For the sake of obtain-
ing a contradiction, suppose ∃ 𝑝, 𝑝′ such that 𝑝 ≠ 𝑝′ and
depends(𝑇 𝑝

𝑖
,𝑇

𝑝′

𝑗
). Then one of the three dependencies in Def-

inition 1 must exist. Suppose that the condition for true-dep
is satisfied, meaning that∃𝑆, 𝑃, 𝑃 ′ such that 𝑆 [𝑃, 𝑝]∩𝑆 [𝑃 ′, 𝑝′]
and W(𝑇𝑖 , (𝑆, 𝑃)) and one of R(𝑇𝑗 , (𝑆, 𝑃 ′)), W(𝑇𝑗 , (𝑆, 𝑃 ′)) or
Rd(𝑇𝑗 , (𝑆, 𝑃 ′) is true. R(𝑇𝑗 , (𝑆, 𝑃 ′)) orW(𝑇𝑗 , (𝑆, 𝑃 ′)) are con-
tradictions, as the true-dependence constraint would dis-
allow fusion. Rd(𝑇𝑗 , (𝑆, 𝑃 ′)) is a contradiction due to the
reduction constraint. Similar logic can be applied to other de-
pendence cases. Here, we show that our algorithm is sound
by identifying cases where fusion is possible—we do not
claim completeness by proving the converse.

We have shown that all dependencies between index tasks
are at most point-wise, so any 𝑇 𝑝

𝑗
can only depend on 𝑇

𝑝

𝑖
,

where 𝑖 < 𝑗 . Since the fused task body is the composition of
each task in [𝑇1, . . . ,𝑇𝑓] in program order, all dependencies
in [𝑇1, . . . ,𝑇𝑓] are preserved.

4.4 Discussion
Fusion at Diffuse’s middle layer of abstraction is key for a
domain-agnostic analysis, and for analysis scalability as the
size of the machine increases. We compare against fusion
on high-level domain-specific libraries, and against fusion
within lower-level runtime systems like Legion.

Domain-specific algorithms for fusion [1, 21, 52, 58, 59]
are effective optimizations for individual distributed libraries.
Approaches that perform fusion on a set of domain-specific
computations use algorithms and analyses that are tied to the
domain of computations being optimized, especially analyses
related to distributed memory. As a result, these techniques
do not readily generalize across libraries. Diffuse targets fu-
sion in the more general case after computations have been
decomposed into tasks in a domain-specificmanner, enabling
domain-agnostic analyses to find optimizations across func-
tion and library boundaries. We expect that domain-specific
techniques may be used in conjunction with the analyses
performed by Diffuse.
While generality is lost when fusing operations within

individual libraries, scalability becomes a concern when an-
alyzing lower-level program representations. A key design

1 import cupynumeric as np

2 x, y = np.zeros(n), np.ones(n)

3 flush_window ()

4 z = 2.0 * x

5 w = y + z

6 v = w ** 2

7 norm = np.linalg.norm(

8 w[len(w)//2:])

9 del x, y, z, w

10 flush_window ()

(a) cuPyNumeric code fragment.

1 # Partitions and launch

2 # domains excluded.

3 ---

4 MULT ([(x, R), (z, W)])

5 ADD([(y, R), (z, R, (w, W)])

6 POW([(w, R), (v, W)])

7 ---

8 NORM([

9 (w[len(w)//2:], R), (norm , Rd)

10])

(b) Emitted task stream.

Figure 6. Example of distributed temporaries.

decision in Diffuse’s IR is that it is scale-free, as the represen-
tation of parallel task groups and partitions of distributed
data are independent of the degree of parallelism. This de-
sign enables Diffuse to symbolically compute a conservative
estimate of the aliasing relationships between distributed
data structures through constant-time queries, which are
heavily used when defining the fusion constraints in Fig-
ure 5. In contrast, lower-level systems like Legion represent
partitions by explicitly mapping points to arbitrary sets of
indices into the distributed data, scaling with the number
of pieces the data is partitioned into. These representations
are more flexible than Diffuse’s, but result in the aliasing
relationship queries needed by a fusion algorithm to scale
with the degree of available parallelism.

5 Task Fusion Optimizations
Having described our algorithm for task fusion, we now
describe optimizations necessary for a practical implementa-
tion. We show how to eliminate temporary distributed data
structures (Section 5.1) and how to memoize the fusion anal-
ysis (Section 5.2). Temporary elimination and memoization
are widely applied optimizations; we discuss how to perform
these optimizations in a distributed, task-based setting.

5.1 Temporary Store Elimination
Once Diffuse identifies a fusible prefix of tasks, stores that
fusion has made temporary may be promoted into task-local
data. Conversion of distributed data into task-local data is
critical for realizing the benefits of fusion, as task-local data
can then be optimized away (Section 6) to maximize reuse.
To introduce when a store is temporary, consider the

cuPyNumeric program in Figure 6a and the resulting task
stream in Figure 6b. This example introduces some new oper-
ations, specifically flush_window, which sends all pending
tasks through Diffuse to the underlying runtime system, and
the Python del operator, which drops references. The pro-
gram creates the stores x, y, z, w, and v. Consider the program
state after line 10: the tasks that initialize x and y have ex-
ecuted, as the first flush_window call sent those tasks to
Diffuse. We note that there are no pending tasks outside
the window, and future tasks are ones the application may

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Rohan Yadav et al.

launch once the call to flush_window returns. The fusion
algorithm determines that the tasks issued by lines 4–6 can
be fused, while the final norm must be excluded. First, v is
not temporary because the application holds a reference to it,
meaning that it could launch a task that reads v after the call
to flush_window(). Next, while the application has deleted
its reference to w, the norm task reads a piece of w and is
still pending after the fused task, and thus must observe any
effects performed on w, meaning that w is not temporary. The
stores x and y are only read by the fused task, and thus are
not temporary. Only z is temporary because it is produced
entirely within the fused task and is not visible to the ap-
plication or pending tasks. We formalize this intuition as
constraints that must be satisfied for a store to be temporary.

Definition 4. Given tasks [𝑇1, . . . ,𝑇𝑓 , . . . ,𝑇𝑛], a store 𝑆 is
temporary in the fusion of [𝑇1, . . . ,𝑇𝑓] if

1. If ∃ 𝑇𝑗 , 𝑃 s.t. R(𝑇𝑗 , (𝑆, 𝑃)), ∃ 𝑇𝑖 such that 𝑖 < 𝑗 ∧
W(𝑇𝑖 , (𝑆, 𝑃)) ∧ covers(𝑆, 𝑃)

2. � 𝑇𝑘 , 𝑃 s.t. 𝑘 > 𝑓 ∧ R(𝑇𝑘 , (𝑆, 𝑃)) ∨ Rd(𝑇𝑘 , (𝑆, 𝑃))
3. 𝑆 has no live application references.

The function covers(𝑆, 𝑃) is true when the partition 𝑃 con-
tains all points in the store 𝑆 . The first two constraints check
that the store’s contents are entirely created within the fused
task and not used by any other existing task; these conditions
are checked through a forwards dataflow analysis of the task
stream. The third constraint ensures that the application can
no longer view any effects on a store, checked through a
split reference counting scheme in the implementation of
Diffuse’s IR. The split reference counting scheme separates
references held by the application from references held by
Diffuse’s runtime. Temporary stores are demoted from a dis-
tributed allocation into a task-local allocation, as described
in Section 6.

5.2 Memoization of Analyses
The final component of our distributed task fusion pipeline
is memoization analysis and code generation (Section 6). The
key challenge in memoization is allowing for the analyses to
be replayed on isomorphic task streams rather than identical
task streams. Consider the streams of tasks in Figure 7a,
where partitions and launch domains are excluded.

Diffuse may reuse the analysis results from the left stream
in Figure 7a on the middle stream, as the pattern of stores
among tasks is isomorphic. In contrast, the right task stream
in Figure 7a has a different pattern of stores across tasks, par-
ticularly the use of S7 in T3. We observe that this problem
is identical to alpha-equivalence, where each store argument
is a bound variable. We identify when two task streams
are isomorphic within Diffuse through a conversion to and
comparison on a canonical, De-Brujin index-like represen-
tation. This representation is shown in Figure 7b. A similar
technique has previously been used to avoid enumerating
instruction sequences equivalent up to register renaming [9].

1 T1([(S1,R), (S2,W)])

2 T2([(S2,R), (S1,W)])

3 T3([(S1,R), (S3,W)])

4 T4([(S3,R), (S1,W)])

1 T1([(S5,R), (S6,W)])

2 T2([(S6,R), (S5,W)])

3 T3([(S5,R), (S7,W)])

4 T4([(S7,R), (S5,W)])

1 T1([(S5,R), (S6,W)])

2 T2([(S6,R), (S5,W)])

3 T3([(S7,R), (S7,W)])

4 T4([(S7,R), (S5,W)])

(a) Two isomorphic task streams and one differing task stream.
1 T1([(0,R), (1,W)])

2 T2([(1,R), (0,W)])

3 T3([(1,R), (2,W)])

4 T4([(2,R), (0,W)])

1 T1([(0,R), (1,W)])

2 T2([(1,R), (0,W)])

3 T3([(2,R), (2,W)])

4 T4([(2,R), (0,W)])

(b) Canonical representations of isomorphic and differing streams.

Figure 7. Example of task stream memoization.

6 Kernel Fusion
The final component of Diffuse is a compilation stack to

optimize fused tasks. A high-level program representation is
required to both perform optimizations like loop fusion and
to lower to different backends like GPUs and multi-threaded
CPUs. We leverage the MLIR compiler stack, which is ex-
tensible and is pre-packaged with many common compiler
analyses. We first provide background on MLIR, and then
describe the code generation process and optimizations per-
formed within Diffuse. We then discuss how Diffuse’s archi-
tecture enables the separation of reasoning about distributed
programs from the optimization of nested loops.

6.1 MLIR Background
We leverage MLIR [38] to build a JIT compiler for Diffuse.
MLIR is an extension of LLVM [37] that provides compiler in-
frastructure for program analyses on higher-level languages
than three-address code. The most relevant component of
this infrastructure to our work is the notion of a dialect,
which is an intermediate representation that has user-defined
semantics. A key aspect of dialects in MLIR is that a single
MLIR program can contain types and operations from multi-
ple dialects, enabling the composition of dialects with differ-
ent semantics. Compilers built using the MLIR framework
run passes over programs that either optimize the opera-
tions within a single dialect, or convert between dialects to
perform progressive lowering. Diffuse’s compiler leverages
community-developed dialects and passes to optimize and
lower task bodies into CPU and GPU code.

6.2 Generator Functions
To describe Diffuse’s compiler, we walk through the stages
that a fused task traverses. cuPyNumeric and Legate Sparse
developers implement tasks by defining variants that target
CPUs or GPUs. To use Diffuse, developers register a gener-
ator function with Diffuse that returns an MLIR fragment
describing the task’s computation. We found the integra-
tion effort of adding these generator functions to be modest,
requiring 50–100 lines of C++ code per operation. We em-
phasize that only library developers, not end users, must
develop MLIR kernels for tasks. Additionally, the integration

Composing Distributed Computations Through Task and Kernel Fusion ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

1 func.func @kernel(

2 %a: memref <?xf64 >,

3 %b: memref <?xf64 >,

4 %c: memref <?xf64 >) {

5 %dim = memref.dim %c, 0

6 affine.for %i = 0 to %dim {

7 %0 = affine.load %a[%i]

8 %1 = affine.load %b[%i]

9 %2 = arith.addf %0, %1

10 affine.store %2, %c[%i] }}

(a) MLIR generated for an
element-wise addition.

1 func.func @fused_kernel(

2 %a: memref <?xf64 >,

3 %b: memref <?xf64 >,

4 %c: memref <?xf64 >,

5 %d: memref <?xf64 >,

6 %e: memref <?xf64 >) {

7 %dim = memref.dim %e, 0

8 affine.for %i = 0 to %dim {

9 %0 = affine.load %a[%i]

10 %1 = affine.load %b[%i]

11 %2 = arith.addf %0, %1

12 affine.store %2, %c[%i] }

13 affine.for %i = 0 to %dim {

14 %0 = affine.load %c[%i]

15 %1 = affine.load %d[%i]

16 %2 = arith.addf %0, %1

17 affine.store %2, %e[%i] }}

(b) Initial body of fused task.

1 func.func @fused_kernel(

2 %a: memref <?xf64 >,

3 %b: memref <?xf64 >,

4 %d: memref <?xf64 >,

5 %e: memref <?xf64 >) {

6 %dim = memref.dim %e, 0

7 %c = memref.alloc %dim

8 affine.for %i = 0 to %dim {

9 %0 = affine.load %a[%i]

10 %1 = affine.load %b[%i]

11 %2 = arith.addf %0, %1

12 affine.store %2, %c[%i] }

13 affine.for %i = 0 to %dim {

14 %0 = affine.load %c[%i]

15 %1 = affine.load %d[%i]

16 %2 = arith.addf %0, %1

17 affine.store %2, %e[%i] }}

(c) After temporary elimination.

1 func.func @fused_kernel(

2 %a: memref <?xf64 >,

3 %b: memref <?xf64 >,

4 %d: memref <?xf64 >,

5 %e: memref <?xf64 >) {

6 %dim = memref.dim %e, 0

7 affine.par %i = 0 to %dim {

8 %0 = affine.load %a[%i]

9 %1 = affine.load %b[%i]

10 %2 = arith.addf %0, %1

11 %3 = affine.load %d[%i]

12 %4 = arith.addf %2, %3

13 affine.store %2, %e[%i] }}

(d) Fully optimized fused task.

Figure 8. Fused MLIR kernel for three way element-wise addition traversing the compilation pipeline. The initial kernel is
created by sequentially composing two of the generated task bodies in Figure 8a.

effort was incremental—as more tasks were implemented
with MLIR generators, Diffuse could exploit more fusion. An
example generated MLIR fragment by cuPyNumeric for an
element-wise addition operation is shown in Figure 8a.

The generated MLIR fragment in Figure 8a contains mul-
tiple dialects: 1) stores are mapped onto the memref dialect,
which provides stronger aliasing guarantees than raw point-
ers; 2) dense iteration is mapped onto the affine dialect, a
target for polyhedral compilation [18]; and 3) the compu-
tation itself is mapped onto the arith dialect, containing
arithmetic operations. UsingMLIR, other dialects can be used
to express higher level operations, like dense and sparse ten-
sor algebra with the linalg and sparse_tensor dialects.

6.3 Compilation Pipeline
WhenDiffuse identifies that a sequence of tasksmay be fused,
it invokes each task generator and constructs an MLIR mod-
ule containing the body of each task in the original program
order. Figure 8b shows a fused task for the cuPyNumeric
computation c = a + b; e = c + d, where all variables rep-
resent distributed vectors. This program originally has two
index tasks (one for each add operation) which are fused into
a single index task where the original task bodies (the MLIR
in Figure 8a) appear sequentially in the fused task. Before op-
timization of the task body, Diffuse first promotes distributed
data into task-local allocations, resulting in Figure 8c.
After elimination of temporary stores, we apply passes

that fuse and parallelize nested loops, and remove task-local
temporary allocations to yield the optimized code in Fig-
ure 8d. The generated kernel is the ideal implementation
for the original program: the separate loops of the original
task bodies have been combined into a single pass over the

vectors, and the temporary c has been eliminated. The op-
timized kernel is then lowered to GPU kernel launches or
OpenMP parallel regions.

In this work, we leverage polyhedral optimizations [18, 19]
to perform fusion and parallelization of loops in kernels.
However, with higher level dialects in MLIR, various domain-
specific kernel fusion techniques (see Section 8) could be
leveraged within a fused task body. We consider the exact
kernel fusion techniques used to be orthogonal to our work.

6.4 Qualitative Benefits
We note several qualitative benefits of our system archi-
tecture in contrast to approaches that attempt to optimize
distributed programs entirely through analysis of impera-
tive code. A key design decision of Diffuse is to leverage a
distributed data model in a scale-free IR of computation that
enables cheap dependence analysis between distributed com-
putations. Separating out the reasoning about distributed
computation avoids intertwining loop optimizations with
distributed communication analyses, allowing the loop op-
timizations to remain unaware of the distributed context.
This separation also allows for information gained during
the distributed analysis phase to be used in code generation:
properties such as array non-aliasing are provided to the
MLIR optimization passes to generate better code. Finally,
the separation of distributed computation into tasks means
that Diffuse does not need to identify optimizable fragments
of static source code.

7 Evaluation
Experimental Setup. We evaluate the performance of Diffuse
on a cluster of NVIDIA A100 DGX SuperPOD nodes. Each
node has 8 A100 GPUs with 80GB of memory, connected by
NVLink and NVSwitch connections, and a dual socket, 128

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Rohan Yadav et al.

core AMD 7742 Rome CPU with 2TB of memory. Each node
is connected via an InfiniBand connection through 8 NICs.
For each experiment, we perform a weak-scaling study,

and report the throughput achieved per processor. A weak-
scaling study increases the problem size as the size of the
target machine grows to keep the problem size per processor
constant. Each reported value is the result of performing 12
runs, dropping the fastest and slowest runs, and then com-
puting the average of the remaining 10 runs. In weak-scaling
experiment (Section 7.1), we exclude a set of warmup itera-
tions from timing to measure the steady-state performance
with and without Diffuse. We separately evaluate the over-
head that Diffuse imposes due to compilation in Section 7.2.

Overview.We evaluate Diffuse on unmodified, open source
cuPyNumeric and Legate Sparse applications, frommicrobench-
marks to full applications. Many of these applications have
appeared in prior publications [12, 60], and range from tens
to thousands of lines of Python. The unique capabilities of
cuPyNumeric and Legate Sparse enable these pure Python ap-
plications with dynamic and data-dependent behavior to be
scaled across multiple nodes of multiple GPUs. An overview
of each application is in Figure 9. We compare each appli-
cation’s performance when run with and without Diffuse
— no changes to the application are needed to enable Dif-
fuse. For some applications, a suitable baseline written in the
industry-standard PETSc [8] library for distributed sparse
linear algebra already exists, and we compare against those
baselines. For other applications, we compare against man-
ually optimized implementations by the original authors.
However, some full cuPyNumeric applications have no base-
line other than when run without name—these applications
are sufficiently complex that developing an independent
high-performance distributed, multi-GPU implementation
is not feasible. We show that when fusion opportunities
are available, Diffuse can exploit them to find speedups in
unmodified, distributed applications. Diffuse enables high-
level programs to equal, and in many cases improve on, the
performance of hand-optimized code.

We do not ablate on the optimizations in Section 5, as tem-
porary elimination is essential for speedupwith kernel fusion
and memoization is a requirement for a practical implemen-
tation. We do not compare against the work of Sundram et
al. [51], which performs only task-fusion, as the version of
cuPyNumeric they used is older and would not be a fair com-
parison. However, we have evaluated Diffuse with only task
fusion and found that it did not yield speedups on our bench-
marks. Task fusion alone can only reduce runtime overhead,
and the task granularity of our benchmarks is larger than
the minimum effective task granularity [49] of Legion (1ms
per task). The window sizes shown in Figure 9 were selected
automatically by Diffuse through a process that increases the
window size when all tasks in the current window size were
fused. As a result, these window sizes enable the maximum
amount of fusion possible in each application. Finally, our

Benchmark Tasks per
Iteration

Tasks per
Iteration (Fused)

Avg Task
Length (ms)

Window
Size

Black-Scholes 67 1 5.3 70
Jacobi 3 2 5.3 5
CG 12.1 4.1 1.9 10

BiCGSTAB 27.1 8.1 1.7 15
GMG 24.1 11.1 1.8 15
CFD 378 40.7 1.1 30

TorchSWE 276.5 152.8 1.4 30

Figure 9. Index tasks per iteration with and without fusion.
Task count is not always whole as iterations may launch
different tasks, or fusion occurs across iteration boundaries.
Reported task granularities are from unfused single-GPU
executions. Window size was selected by Diffuse.

benchmarks issue index tasks that have one point per GPU,
so computations are not over-decomposed.

7.1 Weak Scaling Experiments
Black-Scholes. The Black-Scholes option pricing benchmark
is a trivially-parallel micro-benchmark that contains a se-
quence of 67 data-parallel, and thus fusible, operations. It is
a micro-benchmark that provides a reference point on poten-
tial improvement when the entire application is amenable
to fusion. Figure 10a shows that Diffuse achieves a 10.7x
speedup over the unfused program on 128 GPUs, as the
fused program is a single task containing a single GPU ker-
nel making one pass over the data, greatly increasing the
arithmetic intensity of the computation.

Dense Jacobi Iteration. Unlike Black-Scholes, dense Jacobi
iteration has negligible potential benefit from fusion. Jacobi
iteration consists of a dense matrix-vector multiplication
and two fusible vector operations that are negligible in run-
time. This benchmark shows that our analyses do not have
a significant negative impact on performance when there is
no fusion. Diffuse achieves 0.93–1.08x of the performance of
the unfused Jacobi iteration in Figure 10b, where we believe
the slight improvement is due to experimental variability.
Sparse Krylov Solvers.We evaluate sparse Krylov solvers

implemented with cuPyNumeric and Legate Sparse, namely
Conjugate Gradient (CG) and Bi-Conjugate Gradient Stabi-
lized (BiCGSTAB). The PETSc benchmark implementations
are implemented in MPI+C using PETSc’s API. To perform
a controlled comparison against PETSc, we modify Legate
Sparse to perform a similar optimization as PETSc, where
the non-zero coordinates in each sparse matrix partition are
stored as 32-bit integers instead of 64-bit integers.1
The original implementation of CG in Legate Sparse had

been optimized manually to perform many of the optimiza-
tions that Diffuse does automatically. As a result, the imple-
mentation no longer resembled the high-level description of
CG. We compare against this manually fused implementa-
tion, a naturally written implementation using cuPyNumeric
1PETSc stores coordinates in 32-bit integers even when 64-bit integers are
requested at build time, affecting the performance of the SpMV kernel.

Composing Distributed Computations Through Task and Kernel Fusion ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

1 2 4 8 16 32 64 128
GPUs

0

10

20

30

40

50
Th

ro
ug

hp
ut

 (i
te

ra
tio

ns
 /

se
co

nd
) Fused

Unfused

(a) Black-Scholes

1 2 4 8 16 32 64 128
GPUs

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

 /
se

co
nd

) Fused
Unfused

(b) Jacobi Iteration

Figure 10. Microbenchmark weak scaling (higher is better).

1 2 4 8 16 32 64 128
GPUs

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

 /
se

co
nd

)

Fused
PETSc
Manually Fused
Unfused

(a) CG

1 2 4 8 16 32 64 128
GPUs

0

5

10

15

20

25

30

35

40

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

 /
se

co
nd

) Fused
PETSc
Unfused

(b) BiCGSTAB

Figure 11. Weak scaling of linear solvers (higher is better).

and Legate Sparse, and PETSc. Figure 11a shows that Dif-
fuse automatically optimizes the naturally written CG so
that it runs faster than both the manually optimized version
and PETSc. Diffuse finds additional fusion opportunities by
fusing AXPY’s and dot-products from different iterations.
We implement an unfused version of BiCGSTAB in cu-

PyNumeric and Legate Sparse and compare against PETSc.
Figure 11b shows that Diffuse accelerates the high-level im-
plementation of BiCGSTAB to outperform the unfused ver-
sion by 1.31x on average (geo-mean) and PETSc by 1.15x on
average (geo-mean). PETSc exposes several fused kernels to
users for use in building iterative solvers, but these kernels
can quickly become complicated and esoteric2. In contrast,
Diffuse enables users to write high-level programs in cu-
PyNumeric and Legate Sparse and then derives optimized
kernels for efficient execution.

Geometric Multi-Grid Solver (GMG). Moving from smaller
benchmarks to full applications, we apply Diffuse to a Geo-
metric Multi-Grid (GMG) solver developed in Legate Sparse.
The GMG solver is a CG-based iterative solver with a V-
cycling preconditioner, the injection restriction operator,
and a weighted Jacobi smoother. As with the previous bench-
marks, using Diffuse with the more complex solver required
no changes to user-facing code, and results in a 1.2x speedup
over the original implementation, as seen in Figure 12a.
Computational Fluid Dynamics (CFD). We apply Diffuse

to a cuPyNumeric application that solves the Navier-Stokes
equations for 2D channel flow [10]. The application performs
element-wise operations on aliasing slices of distributed ar-
rays, exposing opportunities for fusion. Diffuse finds be-
tween 1.8x–2.3x speedup over the original implementation,
as shown in Figure 12b. Diffuse achieves higher speedup on
a single GPU than on multiple GPUs. On a single GPU, data
is not partitioned, enabling longer sequences of tasks to sat-
isfy fusion constraints. On multiple GPUs, the dependencies
caused by aliasing data reduce the opportunities for fusion.

ShallowWater Equation Solver (TorchSWE).Our final bench-
mark application is also our most complex: the cuPyNumeric
port of the TorchSWE shallow-water equation solver [25].
We compare against the original cuPyNumeric port, as well
as a version that the cuPyNumeric developers manually op-
timized using numpy.vectorize. The vectorize utility JIT-
compiles a user-defined element-wise operator, doing some
of the optimizations that Diffuse performs automatically.
Figure 12c shows the performance of TorchSWE with Dif-
fuse compared to these baselines. Diffuse achieves a 1.61x
speedup on average (geo-mean) over the unfused TorchSWE,
and a 1.35x speedup on average (geo-mean) over the man-
ually vectorized version (labeled with “Manually Fused” in

2Such as VecAXPBYPCZ in BiCGSTAB (https://petsc.org/main/manualpages/
Vec/VecAXPBYPCZ/).

https://petsc.org/main/manualpages/Vec/VecAXPBYPCZ/
https://petsc.org/main/manualpages/Vec/VecAXPBYPCZ/

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Rohan Yadav et al.

1 2 4 8 16 32 64 128
GPUs

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

 /
se

co
nd

) Fused
Unfused

(a) GMG

1 2 4 8 16 32 64 128
GPUs

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

 /
se

co
nd

) Fused
Unfused

(b) CFD

1 2 4 8 16 32 64 128
GPUs

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

 /
se

co
nd

) Fused
Manually Fused
Unfused

(c) TorchSWE

Figure 12. Weak scaling of full applications (higher is better).

Benchmark Standard (s) Compiled (s) Breakeven Iterations
Black-Scholes 0.38 0.06 N/A

Jacobi 0.53 0.43 N/A
CG 0.67 1.30 99.44

BiCGSTAB 1.26 2.19 80.43
GMG 0.49 1.38 118.75
CFD 5.10 10.89 25.21

TorchSWE 0.97 8.82 43.88

Figure 13. Warmup times on 8 GPUs.

Figure 12c). Since Diffuse is analyzing the entire applica-
tion, it can find fusion opportunities missed by developers
optimizing the program by hand.

7.2 Compilation Time
Wemeasure the overhead that Diffuse’s compilation imposes
on overall runtime. When evaluating our benchmarks, we
compute the throughput after warmup iterations have con-
cluded. To measure the effect of compilation, we measure
the warmup time with and without compilation, using the
window sizes reported in Figure 9. We then compute the
number of iterations required for the fused version to be
faster than the unfused version of the application when in-
cluding the warmup compilation time. The results are shown
in Figure 13; Diffuse’s compilation times are modest, requir-
ing 25–119 iterations to amortize the cost of compilation.
The fused Black-Scholes computation is so much faster than
the unfused version that a single iteration is sufficient to
amortize compilation. For Jacobi, compilation time was over-
lapped with expensive dense matrix-vector multiply kernel,
and thus not exposed in the warmup. As seen in Figure 10b,
due to experimental variation, the fused and unfused ver-
sions of Jacobi are slightly faster or slower than each other on
different GPU counts. These costs are especially reasonable
as scientific applications like the ones we evaluated would
be run in production for thousands to millions of iterations.
In the future, a production-grade implementation of Diffuse
could maintain a cache of compiled kernels on disk, rather
than in memory, and pay the compilation cost only the first
time the application is run.

8 Related Work
Task Fusion. Task fusion is a widely applied technique in par-
allel computing to reduce the overheads of parallelism [28,
29, 43, 47, 55, 61]. Most prior work considers the fusion of
individual tasks—in this work, we consider a more complex
variant of task fusion, the fusion of groups of distributed
tasks, which is challenging due to the dependencies that ex-
ist between distributed tasks. The most related work is that
of Sundram et al. [51], which identifies the problem and pro-
vides an initial solution for detecting when fusion of index
tasks is possible. We improve on this work by developing a
formal model for reasoning about distributed tasks, identi-
fying new constraints on fusion, and proving that the set is
sufficient. We then pair task fusion with a JIT compiler to
fuse the task bodies, enabling Diffuse to achieve significantly
larger speedups than just task fusion, as more potential ben-
efits than runtime overhead removal are possible.
Kernel Fusion. Nested loop fusion in imperative, array-

based programs is well-studied [4, 20, 27, 35]. Our work com-
bines loop fusion with the data and computational models
of a tasking runtime to enable kernel fusion in a distributed
environment. Kernel fusion has also been explored heavily in
different domains. Deforestation approaches aim to remove
temporary lists and trees in functional programs [54]. Fusion
in collection-oriented languages combines operations like
map and reduce into single passes over data structures [22,
23, 31, 32, 56]. Various compilers have been developed to
generate fused code for operations over dense [24, 46, 53]
and sparse tensors [17, 36]. Machine learning frameworks
perform operator fusion within neural networks [21, 34, 40,
42, 48]. Our work provides a domain-agnostic framework for
identifying fusion in streams of distributed tasks, and could
leverage these techniques for kernel fusion.
Efficient Composition of Parallel Software. Diffuse aims to

efficiently compose operations within and across distributed
libraries. Some recent projects have tackled the problem of
efficient composition; we discuss each in turn. Weld [44] pro-
vides a loop-based IR in which users can define single-node
library computations, and a runtime system that optimizes

Composing Distributed Computations Through Task and Kernel Fusion ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

the IR to enable cross-function and cross-library optimiza-
tions. Split Annotations [45] provides partitioning annota-
tions for users to attach to library functions, and uses these
annotations to run cache-sized batches of the functions to
maximize data reuse. BothWeld and Split Annotations target
a similar problem as Diffuse, but would require a model of
distributed data like the one we propose to safely perform
optimizations in a distributed setting. DaCe [16] is a compiler
that leverages an IR called Stateful Dataflow MultiGraphs
to perform optimizations like fusion on Python/NumPy pro-
grams. Distributed programs in DaCe are explicitly parallel,
including manual communication with libraries like MPI,
which requires different kinds of analyses.

Jax [21] and PyTorch [6] are machine-learning systems
that compile NumPy-like descriptions of neural networks
to perform optimizations like fusion and automatic differ-
entiation. Systems like Jax and PyTorch accept structured
program representations (neural network graphs) and ap-
ply optimizations that leverage domain-specific knowledge,
many of which are not possible for Diffuse to perform. In
contrast, Diffuse only leverages the privilege information
about tasks to perform optimizations, and allows for descrip-
tion of programs with complex aliasing and mutation that
are not possible to represent in ML systems, like the CFD or
TorchSWE simulations. We consider Diffuse to be a different
point in the design space than these ML systems, focusing on
fusion in a more general setting without application-specific
knowledge.
Distributed Runtime Systems. Diffuse uses a scale-free IR

to efficiently perform distributed dependence and alias anal-
yses. This is similar to Index Launches [50], a representation
of distributed tasks that compresses the degree of parallelism.
Diffuse’s model of distributed data supports content-based
coherence, meaning that the same data may be referred to in
multiple different ways. Legion [15], which Diffuse builds
upon, is a system that supports content-based coherence
of distributed data. Legion exposes a more general inter-
face for partitioning data, allowing a partition to contain
arbitrary subsets. Legion then uses sophisticated algorithms
for computing dependencies between tasks and maintain-
ing coherence of distributed data [14]. Legion’s flexible data
model and support for precise dependence analysis at scale
are critical features for building libraries like cuPyNumeric
and Legate Sparse. Supporting Legion’s flexible data model
is a key challenge in Diffuse, as libraries that target Legion
depend on this capability. Diffuse’s restricted data represen-
tation and goal of only fusion enable compact analyses for
the dependence and coherence problems. In systems without
content-based coherence, simpler approaches than ours may
suffice, as aliasing distributed data is no longer a concern.

9 Conclusion
We introduced Diffuse, a system that performs task and ker-
nel fusion on streams of distributed tasks, enabling optimiza-
tions that improve data reuse and remove allocations of dis-
tributed data structures in end user programs. Diffuse lever-
ages a scale-free intermediate representation of distributed
computation and data to perform these analyses in a scal-
able manner. These techniques enable Diffuse to compose
computations in and across cuPyNumeric and Legate Sparse,
matching or exceeding the performance of hand-tuned code.

Acknowledgements
We thank Scott Kovach for his assistance in formalizing the
fusion correctness proof. We thank Shriram Jagannathan
and Irina Demeshko for their assistance in running the vec-
torized TorchSWE benchmark. We thank (in no particular
order) David Broman, James Dong, AJ Root, Scott Kovach,
Parthiv Krishna, Benjamin Driscoll, Olivia Hsu, Marco Sira-
cusa, Rubens Lacouture for their comments and discussions
on early stages of this manuscript. Rohan Yadav was sup-
ported by an NVIDIA Graduate Fellowship, and part of this
work was done while Rohan Yadav was an intern at NVIDIA
Research. This work was in part supported by the National
Science Foundation under Grant CCF-2216964.

References
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16). 265–283. https://www.usenix.org/system/files/conference/osdi16/
osdi16-abadi.pdf

[2] Vikram Adve and John Mellor-Crummey. 1998. Using integer sets for
data-parallel program analysis and optimization. In Proceedings of the
ACM SIGPLAN 1998 Conference on Programming Language Design and
Implementation (Montreal, Quebec, Canada) (PLDI ’98). Association
for Computing Machinery, New York, NY, USA, 186–198. https://doi.
org/10.1145/277650.277721

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006.
Compilers: Principles, Techniques, and Tools (2nd Edition). Addison-
Wesley Longman Publishing Co., Inc., USA.

[4] Frances E Allen and John Cocke. 1971. A Catalogue of Optimizing
Transformations. (1971).

[5] Saman P. Amarasinghe and Monica S. Lam. 1993. Communication
optimization and code generation for distributed memory machines.
In Proceedings of the ACM SIGPLAN 1993 Conference on Programming
Language Design and Implementation (Albuquerque, NewMexico, USA)
(PLDI ’93). Association for Computing Machinery, New York, NY, USA,
126–138. https://doi.org/10.1145/155090.155102

[6] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh
Jain, Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni
Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable, Alban
Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong,
Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalam-
barkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang,

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.1145/277650.277721
https://doi.org/10.1145/277650.277721
https://doi.org/10.1145/155090.155102

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Rohan Yadav et al.

Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan, Christian
Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen
Suk, Shunting Zhang, Michael Suo, Phil Tillet, Xu Zhao, Eikan Wang,
Keren Zhou, Richard Zou, Xiaodong Wang, Ajit Mathews, William
Wen, Gregory Chanan, Peng Wu, and Soumith Chintala. 2024. Py-
Torch 2: Faster Machine Learning Through Dynamic Python Bytecode
Transformation and Graph Compilation. In Proceedings of the 29th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2 (La Jolla, CA, USA)
(ASPLOS ’24). Association for Computing Machinery, New York, NY,
USA, 929–947. https://doi.org/10.1145/3620665.3640366

[7] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-
André Wacrenier. 2009. StarPU: a unified platform for task scheduling
on heterogeneous multicore architectures. In European Conference on
Parallel Processing. Springer, 863–874.

[8] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson,
Jed Brown, Peter Brune, Kris Buschelman, Emil M. Constantinescu,
Lisandro Dalcin, Alp Dener, Victor Eijkhout, Jacob Faibussowitsch,
William D. Gropp, Václav Hapla, Tobin Isaac, Pierre Jolivet, Dmitry
Karpeev, Dinesh Kaushik, Matthew G. Knepley, Fande Kong, Scott
Kruger, Dave A. May, Lois Curfman McInnes, Richard Tran Mills,
Lawrence Mitchell, Todd Munson, Jose E. Roman, Karl Rupp, Patrick
Sanan, Jason Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang,
Hong Zhang, and Junchao Zhang. 2022. PETSc Web page. https:
//petsc.org/. https://petsc.org/

[9] Sorav Bansal and Alex Aiken. 2006. Automatic Generation of Peephole
Superoptimizers. SIGOPS Oper. Syst. Rev. 40, 5 (oct 2006), 394–403.
https://doi.org/10.1145/1168917.1168906

[10] Lorena Barba and Gilbert Forsyth. 2019. CFD Python: the 12 steps
to Navier-Stokes equations. Journal of Open Source Education 2, 16
(2019), 21. https://doi.org/10.21105/jose.00021

[11] Paul Barham, Aakanksha Chowdhery, Jeff Dean, Sanjay Ghemawat,
Steven Hand, Daniel Hurt, Michael Isard, Hyeontaek Lim, Ruoming
Pang, Sudip Roy, et al. 2022. Pathways: Asynchronous distributed
dataflow for ML. Proceedings of Machine Learning and Systems 4 (2022),
430–449.

[12] Michael Bauer and Michael Garland. 2019. Legate NumPy: Accel-
erated and Distributed Array Computing. In Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (Denver, Colorado) (SC ’19). Association for
Computing Machinery, New York, NY, USA, Article 23, 23 pages.
https://doi.org/10.1145/3295500.3356175

[13] M. Bauer, W. Lee, M. Papadakis, M. Zalewski, and M. Garland. 2021.
Supercomputing in Python With Legate. Computing in Science &
Engineering 23, 04 (jul 2021), 73–79. https://doi.org/10.1109/MCSE.
2021.3088239

[14] Michael Bauer, Elliott Slaughter, Sean Treichler, Wonchan Lee, Michael
Garland, and Alex Aiken. 2023. Visibility Algorithms for Dynamic
Dependence Analysis and Distributed Coherence. In Proceedings of the
28th ACM SIGPLAN Annual Symposium on Principles and Practice of
Parallel Programming (Montreal, QC, Canada) (PPoPP ’23). Association
for Computing Machinery, New York, NY, USA, 218–231. https://doi.
org/10.1145/3572848.3577515

[15] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012.
Legion: Expressing locality and independence with logical regions. In
SC ’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE, 1–11. https://doi.
org/10.1109/SC.2012.71

[16] Tal Ben-Nun, Johannes de Fine Licht, Alexandros N. Ziogas, Timo
Schneider, and Torsten Hoefler. 2019. Stateful Dataflow Multigraphs:
A Data-Centric Model for Performance Portability on Heterogeneous
Architectures. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Denver,
Colorado) (SC ’19). Association for Computing Machinery, New York,

NY, USA, Article 81, 14 pages. https://doi.org/10.1145/3295500.3356173
[17] Aart Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas Vasi-

lache, Bixia Zheng, and Fredrik Kjolstad. 2022. Compiler support for
sparse tensor computations in MLIR. ACM Transactions on Architecture
and Code Optimization (TACO) 19, 4 (2022), 1–25.

[18] Uday Bondhugula. 2020. High Performance Code Generation in
MLIR: An Early Case Study with GEMM. CoRR abs/2003.00532 (2020).
arXiv:2003.00532 https://arxiv.org/abs/2003.00532

[19] Uday Kumar Reddy Bondhugula. 2008. Effective automatic paralleliza-
tion and locality optimization using the polyhedral model. Ph. D. Dis-
sertation. USA. Advisor(s) Sadayappan, P. AAI3325799.

[20] Uday Kumar Reddy Bondhugula. 2008. Effective Automatic Paral-
lelization and Locality Optimization Using the Polyhedral Model. Ph. D.
Dissertation. USA. Advisor(s) Sadayappan, P. AAI3325799.

[21] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. 2018. JAX:
composable transformations of Python+NumPy programs. http://github.
com/google/jax

[22] Kevin J. Brown, HyoukJoong Lee, Tiark Romp, Arvind K. Sujeeth,
Christopher De Sa, Christopher Aberger, and Kunle Olukotun. 2016.
Have abstraction and eat performance, too: Optimized heterogeneous
computing with parallel patterns. In 2016 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). 194–205.

[23] Siddhartha Chatterjee, Guy E. Blelloch, and Allan L. Fisher. 1991. Size
and Access Inference for Data-Parallel Programs. In Proceedings of the
ACM SIGPLAN 1991 Conference on Programming Language Design and
Implementation (Toronto, Ontario, Canada) (PLDI ’91). Association for
Computing Machinery, New York, NY, USA, 130–144. https://doi.org/
10.1145/113445.113457

[24] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q.
Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. 2018. TVM: End-to-End Optimization Stack for Deep
Learning. CoRR abs/1802.04799 (2018). arXiv:1802.04799 http://arxiv.
org/abs/1802.04799

[25] Pi-Yueh Chuang. 2021. TorchSWE: GPU shallow-water equation solver.
[26] Anthony Danalis, Heike Jagode, George Bosilca, and Jack Dongarra.

2015. Parsec in practice: Optimizing a legacy chemistry application
through distributed task-based execution. In 2015 IEEE International
Conference on Cluster Computing. IEEE, 304–313.

[27] A. Darte. 1999. On the complexity of loop fusion. In 1999 International
Conference on Parallel Architectures and Compilation Techniques (Cat.
No.PR00425). 149–157. https://doi.org/10.1109/PACT.1999.807510

[28] Dask Authors. 2023. Dask Optimization. Accessed: 2023-10-08.
[29] Robert Dyer. 2013. Task Fusion: Improving Utilization of Multi-

User Clusters. In Proceedings of the 2013 Companion Publication for
Conference on Systems, Programming, & Applications: Software for
Humanity (Indianapolis, Indiana, USA) (SPLASH ’13). Association
for Computing Machinery, New York, NY, USA, 117–118. https:
//doi.org/10.1145/2508075.2514878

[30] Huseyin M. Elibol. 2022. NumS: Scalable Array Programming
for the Cloud. Ph. D. Dissertation. https://www.proquest.
com/dissertations-theses/nums-scalable-array-programming-
cloud/docview/2727269933/se-2 Copyright - Database copyright
ProQuest LLC; ProQuest does not claim copyright in the individual
underlying works; Last updated - 2023-03-08.

[31] Andrew Gill, John Launchbury, and Simon L. Peyton Jones. 1993. A
Short Cut to Deforestation. In Proceedings of the Conference on Func-
tional Programming Languages and Computer Architecture (Copen-
hagen, Denmark) (FPCA ’93). Association for Computing Machinery,
New York, NY, USA, 223–232. https://doi.org/10.1145/165180.165214

[32] Torsten Grust. 2004. Monad Comprehensions: A Versatile Representation
for Queries. Springer Berlin Heidelberg, Berlin, Heidelberg, 288–311.
https://doi.org/10.1007/978-3-662-05372-0_12

https://doi.org/10.1145/3620665.3640366
https://petsc.org/
https://petsc.org/
https://petsc.org/
https://doi.org/10.1145/1168917.1168906
https://doi.org/10.21105/jose.00021
https://doi.org/10.1145/3295500.3356175
https://doi.org/10.1109/MCSE.2021.3088239
https://doi.org/10.1109/MCSE.2021.3088239
https://doi.org/10.1145/3572848.3577515
https://doi.org/10.1145/3572848.3577515
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1145/3295500.3356173
https://arxiv.org/abs/2003.00532
https://arxiv.org/abs/2003.00532
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1145/113445.113457
https://doi.org/10.1145/113445.113457
https://arxiv.org/abs/1802.04799
http://arxiv.org/abs/1802.04799
http://arxiv.org/abs/1802.04799
https://doi.org/10.1109/PACT.1999.807510
https://doi.org/10.1145/2508075.2514878
https://doi.org/10.1145/2508075.2514878
https://www.proquest.com/dissertations-theses/nums-scalable-array-programming-cloud/docview/2727269933/se-2
https://www.proquest.com/dissertations-theses/nums-scalable-array-programming-cloud/docview/2727269933/se-2
https://www.proquest.com/dissertations-theses/nums-scalable-array-programming-cloud/docview/2727269933/se-2
https://doi.org/10.1145/165180.165214
https://doi.org/10.1007/978-3-662-05372-0_12

Composing Distributed Computations Through Task and Kernel Fusion ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[33] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian
Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array
programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362.
https://doi.org/10.1038/s41586-020-2649-2

[34] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei
Zaharia, and Alex Aiken. 2019. TASO: Optimizing Deep Learning
Computation with Automatic Generation of Graph Substitutions. In
Proceedings of the 27th ACM Symposium on Operating Systems Princi-
ples (Huntsville, Ontario, Canada) (SOSP ’19). Association for Comput-
ing Machinery, New York, NY, USA, 47–62. https://doi.org/10.1145/
3341301.3359630

[35] Ken Kennedy and Kathryn S. McKinley. 1993. Maximizing Loop Paral-
lelism and Improving Data Locality via Loop Fusion and Distribution.
In Proceedings of the 6th International Workshop on Languages and
Compilers for Parallel Computing. Springer-Verlag, Berlin, Heidelberg,
301–320.

[36] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and
Saman Amarasinghe. 2017. The Tensor Algebra Compiler. Proc. ACM
Program. Lang. 1, OOPSLA, Article 77 (oct 2017), 29 pages. https:
//doi.org/10.1145/3133901

[37] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization (Palo Alto, California)
(CGO ’04). IEEE Computer Society, USA, 75.

[38] Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday Bondhugula,
River Riddle, Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas
Vasilache, and Oleksandr Zinenko. 2020. MLIR: A Compiler Infras-
tructure for the End of Moore’s Law. CoRR abs/2002.11054 (2020).
arXiv:2002.11054 https://arxiv.org/abs/2002.11054

[39] Wonchan Lee, Manolis Papadakis, Elliott Slaughter, and Alex Aiken.
2019. A constraint-based approach to automatic data partition-
ing for distributed memory execution. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis (Denver, Colorado) (SC ’19). Association for
Computing Machinery, New York, NY, USA, Article 45, 24 pages.
https://doi.org/10.1145/3295500.3356199

[40] Ao Li, Bojian Zheng, Gennady Pekhimenko, and Fan Long. 2022. Au-
tomatic horizontal fusion for GPU kernels. In Proceedings of the 20th
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (Virtual Event, Republic of Korea) (CGO ’22). IEEE Press, 14–27.
https://doi.org/10.1109/CGO53902.2022.9741270

[41] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I Jordan, et al. 2018. Ray: A distributed framework for emerg-
ing {AI} applications. In 13th USENIX Symposium onOperating Systems
Design and Implementation (OSDI 18). 561–577.

[42] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin
Ren. 2021. DNNFusion: Accelerating Deep Neural Networks Exe-
cution with Advanced Operator Fusion. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (Virtual, Canada) (PLDI 2021). Associa-
tion for Computing Machinery, New York, NY, USA, 883–898. https:
//doi.org/10.1145/3453483.3454083

[43] Albert Noll and Thomas Gross. 2013. Online feedback-directed op-
timizations for parallel Java code. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications (Indianapolis, Indiana, USA)
(OOPSLA ’13). Association for Computing Machinery, New York, NY,
USA, 713–728. https://doi.org/10.1145/2509136.2509518

[44] Shoumik Palkar, James J Thomas, Anil Shanbhag, Deepak Narayanan,
Holger Pirk, Malte Schwarzkopf, Saman Amarasinghe, and Matei Za-
haria. 2017. Weld: A common runtime for high performance data
analytics. (2017).

[45] Shoumik Palkar and Matei Zaharia. 2019. Optimizing Data-Intensive
Computations in Existing Libraries with Split Annotations. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles
(Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing
Machinery, New York, NY, USA, 291–305. https://doi.org/10.1145/
3341301.3359652

[46] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-
guage and Compiler for Optimizing Parallelism, Locality, and Recom-
putation in Image Processing Pipelines. SIGPLAN Not. 48, 6 (jun 2013),
519–530. https://doi.org/10.1145/2499370.2462176

[47] Andrea Rosà, Eduardo Rosales, and Walter Binder. 2019. Analysis
and Optimization of Task Granularity on the Java Virtual Machine.
ACM Trans. Program. Lang. Syst. 41, 3, Article 19 (jul 2019), 47 pages.
https://doi.org/10.1145/3338497

[48] Amit Sabne. 2020. XLA : Compiling Machine Learning for Peak Per-
formance.

[49] Elliott Slaughter, Wei Wu, Yuankun Fu, Legend Brandenburg, Nico-
lai Garcia, Wilhem Kautz, Emily Marx, Kaleb S. Morris, Qinglei Cao,
George Bosilca, Seema Mirchandaney, Wonchan Lee, Sean Treichler,
Patrick McCormick, and Alex Aiken. 2020. Task bench: a parame-
terized benchmark for evaluating parallel runtime performance. In
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (Atlanta, Georgia) (SC ’20).
IEEE Press, Article 62, 15 pages.

[50] Rupanshu Soi, Michael Bauer, Sean Treichler, Manolis Papadakis, Won-
chan Lee, Patrick McCormick, Alex Aiken, and Elliott Slaughter. 2021.
Index Launches: Scalable, Flexible Representation of Parallel Task
Groups. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (St. Louis, Mis-
souri) (SC ’21). Association for Computing Machinery, New York, NY,
USA, Article 66, 18 pages. https://doi.org/10.1145/3458817.3476175

[51] Shiv Sundram, Wonchan Lee, and Alex Aiken. 2022. Task Fusion in
Distributed Runtimes. In 2022 IEEE/ACM Parallel Applications Work-
shop: Alternatives To MPI+X (PAW-ATM). 13–25. https://doi.org/10.
1109/PAW-ATM56565.2022.00007

[52] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos
Efrain Quintero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati,
Pat McCormick, Jamaludin Mohd-Yusof, Xi Luo, Dheevatsa Mudigere,
Jongsoo Park, Misha Smelyanskiy, and Alex Aiken. 2022. Unity: Ac-
celerating DNN Training Through Joint Optimization of Algebraic
Transformations and Parallelization. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22). USENIX Asso-
ciation, Carlsbad, CA, 267–284. https://www.usenix.org/conference/
osdi22/presentation/unger

[53] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. 2018. Tensor Comprehensions: Framework-
Agnostic High-Performance Machine Learning Abstractions. CoRR
abs/1802.04730 (2018). arXiv:1802.04730 http://arxiv.org/abs/1802.
04730

[54] PhilipWadler. 1990. Deforestation: transforming programs to eliminate
trees. Theoretical Computer Science 73, 2 (1990), 231–248. https:
//doi.org/10.1016/0304-3975(90)90147-A

[55] Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar. 2024.
Automatic Parallelism Management. Proc. ACM Program. Lang. 8,
POPL, Article 38 (jan 2024), 32 pages. https://doi.org/10.1145/3632880

[56] Sam Westrick, Mike Rainey, Daniel Anderson, and Guy E. Blelloch.
2022. Parallel Block-Delayed Sequences. In Proceedings of the 27th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3133901
https://arxiv.org/abs/2002.11054
https://arxiv.org/abs/2002.11054
https://doi.org/10.1145/3295500.3356199
https://doi.org/10.1109/CGO53902.2022.9741270
https://doi.org/10.1145/3453483.3454083
https://doi.org/10.1145/3453483.3454083
https://doi.org/10.1145/2509136.2509518
https://doi.org/10.1145/3341301.3359652
https://doi.org/10.1145/3341301.3359652
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/3338497
https://doi.org/10.1145/3458817.3476175
https://doi.org/10.1109/PAW-ATM56565.2022.00007
https://doi.org/10.1109/PAW-ATM56565.2022.00007
https://www.usenix.org/conference/osdi22/presentation/unger
https://www.usenix.org/conference/osdi22/presentation/unger
https://arxiv.org/abs/1802.04730
http://arxiv.org/abs/1802.04730
http://arxiv.org/abs/1802.04730
https://doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1145/3632880

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Rohan Yadav et al.

(Seoul, Republic of Korea) (PPoPP ’22). Association for Computing Ma-
chinery, New York, NY, USA, 61–75. https://doi.org/10.1145/3503221.
3508434

[57] M.E. Wolf and M.S. Lam. 1991. A loop transformation theory and an
algorithm to maximize parallelism. IEEE Transactions on Parallel and
Distributed Systems 2, 4 (1991), 452–471. https://doi.org/10.1109/71.
97902

[58] Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. 2022. DISTAL: The
Distributed Tensor Algebra Compiler. In Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation (San Diego, CA, USA) (PLDI 2022). Association for
Computing Machinery, New York, NY, USA, 286–300. https://doi.org/
10.1145/3519939.3523437

[59] Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. 2022. SpDISTAL: Com-
piling Distributed Sparse Tensor Computations. In Proceedings of the

International Conference on High Performance Computing, Networking,
Storage and Analysis (Dallas, Texas) (SC ’22). IEEE Press, Article 59,
15 pages.

[60] Rohan Yadav, Wonchan Lee, Melih Elibol, Taylor Lee Patti, Manolis
Papadakis, Michael Garland, Alex Aiken, Fredrik Kjolstad, and Michael
Bauer. 2023. Legate Sparse: Distributed Sparse Computing in Python.
(2023).

[61] Jisheng Zhao, Jun Shirako, V. Krishna Nandivada, and Vivek Sarkar.
2010. Reducing task creation and termination overhead in explicitly
parallel programs. In Proceedings of the 19th International Conference
on Parallel Architectures and Compilation Techniques (Vienna, Austria)
(PACT ’10). Association for Computing Machinery, New York, NY, USA,
169–180. https://doi.org/10.1145/1854273.1854298

https://doi.org/10.1145/3503221.3508434
https://doi.org/10.1145/3503221.3508434
https://doi.org/10.1109/71.97902
https://doi.org/10.1109/71.97902
https://doi.org/10.1145/3519939.3523437
https://doi.org/10.1145/3519939.3523437
https://doi.org/10.1145/1854273.1854298

	Abstract
	1 Introduction
	2 Motivating Example
	3 Intermediate Representation
	3.1 Data Model
	3.2 Computational Model

	4 Distributed Task Fusion
	4.1 Dependencies
	4.2 Fusion Algorithm
	4.3 Proof of Correctness
	4.4 Discussion

	5 Task Fusion Optimizations
	5.1 Temporary Store Elimination
	5.2 Memoization of Analyses

	6 Kernel Fusion
	6.1 MLIR Background
	6.2 Generator Functions
	6.3 Compilation Pipeline
	6.4 Qualitative Benefits

	7 Evaluation
	7.1 Weak Scaling Experiments
	7.2 Compilation Time

	8 Related Work
	9 Conclusion
	References

