
Reducing the Impact of Intra-Core Process Variability with
Criticality-Based Resource Allocation and Prefetching

Bogdan F. Romanescu, Michael E. Bauer, Sule Ozev, and Daniel J. Sorin
Department of Electrical and Computer Engineering

Duke University
P.O. Box 90291

Durham, NC 27708, USA
{bfr2, meb26, sule, sorin}@ee.duke.edu

Appears in the ACM International Conference on Computing Frontiers
Ischia, Italy, May, 2008
ABSTRACT
We develop architectural techniques for mitigating the impact
of process variability. Our techniques hide the performance
effects of slow components—including registers, functional
units, and L1I and L1D cache frames—without slowing the
clock frequency or pessimistically assuming that all compo-
nents are slow. Using ideas previously developed for other
purposes—criticality-based allocation of resources, prefetch-
ing, and prefetch buffering—we allow design engineers to
aggressively set the clock frequency without worrying about
the subset of components that cannot meet this frequency. Our
techniques outperform speed binning, because clock fre-
quency benefits outweigh slight losses in IPC.

Categories and Subject Descriptors
C.1.0 Processor Architectures, C.4 Performance of Systems

General Terms
performance, reliability

Keywords
process variability, microarchitecture

1. INTRODUCTION
A major problem facing the computer and semiconductor
industries is the increasing amount of CMOS process variabil-
ity [3, 9]. As transistor and wire dimensions continue to
shrink, the variability in these dimensions has a greater impact
[17]. Variability in low-level circuit parameters, such as tran-
sistor gate length and gate oxide thickness, complicates system

design by introducing uncertainty about how a fabricated sys-
tem will perform. Although a circuit or chip is designed to run
at a nominal clock frequency, the fabricated implementation
may vary far from this expected performance.
There are useful transistor-level and circuit-level techniques,
such as adaptive body biasing (ABB) [23], gate sizing, Razor
flip-flops [7], and X-Pipe flip-flops [24], that can help to miti-
gate the impact of variability, but they cannot solve the prob-
lem entirely. For example, Razor flip-flops cannot replace
functional flip-flops which are at the ends of either critical
paths (paths that typically determine the clock frequency) or
short paths whose delays are less than half of a cycle. Thus, we
will still have some components (e.g., functional units) that are
slower than other identical components. Our goal in this work
is to allow the processor to be clocked faster than its slowest
components.
In this paper, we develop architectural techniques for mitigat-
ing the impact of process variability on three performance-crit-
ical microprocessor components. We make the following three
contributions:
•We alleviate the impact of having slow access latencies

for some registers, by renaming the destinations of critical
instructions to fast registers.
•We reduce the impact of slow functional units by giving

critical instructions priority for the fast functional units.
•We mitigate the impact of having some L1 cache frames

that are slower than others, by prefetching into small
prefetch buffers.

All three of our approaches enable us to aggressively clock the
processor, and thus increase the fraction of slow components,
without significantly degrading the IPC (instructions per
cycle). For example, we can clock the processor so fast that
10% of its L1I cache frames cannot be accessed within the
clock period, yet we incur only a slight IPC loss. The benefit in
clock frequency outweighs the loss in IPC, providing us with a
net gain in performance.
Our work combines several ideas—criticality, prefetching, and
prefetch buffering—that were previously developed for other
purposes. Our contributions are using and combining these
ideas to overcome the effects of process variability.
We discuss process variability, its potential impact, and how
we model it in Section 2. We describe our experimental meth-

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
CF’08, May 5-7, 2008, Ischia, Italy.
Copyright 2008 ACM 978-1-60558-077-7/08/05...$5.00.
1

odology in Section 3. In Sections 4 through 6, we present our
three variability tolerance schemes. We compare this work
with related work in Section 7, and we conclude in Section 8.

2. PROCESS VARIABILITY
In this section, we discuss process variability in more detail, in
order to motivate our research. Process variability arises due to
several specific causes, but the over-arching cause is the inabil-
ity to perform VLSI fabrication with every feature exactly as
planned. The design might specify that a transistor is 45nm
long, but, due to fabrication imperfections, some transistors
may be somewhat shorter or longer.

2.1 Impact of Process Variability
In addition to affecting a transistor’s length and width, process
variability also has a non-trivial impact on a transistor’s gate
oxide thickness and threshold voltage. These four low-level
parameters—L, W, tox, and Vt0,—are generally considered to
be the most sensitive to process variability [17].
The challenge for architects and circuit designers is that low-
level process variability impacts the behavior of transistors and
wires, and this impact propagates up to gates, subsystems, and
processors. Currently, there are three primary ways of dealing
with variability that is not tolerated with low-level circuit tech-
niques, but each of these approaches has drawbacks. We
describe each of them in the context of a system with many
generic components (e.g., cache frames, functional units, etc.),
some of which are slower than others.
•Speed binning: Decrease the clock frequency for the

whole chip such that the latency of slow components still
fits into its nominal number of cycles. Key disadvantage:
the whole processor is slowed down to accommodate
some slow components.
•Deconfiguration of slow components: Never use any com-

ponents that are deemed too slow and thus do not sacrifice
clock frequency. Key disadvantage: deconfiguring slow
components reduces the effective number of components
and hurts IPC.
•Pessimistic design: Assume that the component latency is

expected to be C cycles in the case without process vari-
ability. Design the processor such that all components are
expected to take more than C cycles. Key disadvantage:
all components take one or more extra cycles, even when
not strictly necessary. The throughput disadvantage of
pessimistic design can be mitigated in some situations by
pipelining, but the latency penalty cannot be avoided.

There also exist hybrids of these three approaches. In particu-
lar, a designer can specify the latency boundaries between
components that are “fast” and “slow”, deconfigure the “slow”
components, and then speed bin the chips. Nevertheless, any
of these approaches or hybrids suffer from problems that we
want to overcome.

2.2 Modeling Process Variability
As part of this project, we have used the publicly available
VariaSim [19] tool for determining the impact of process vari-
ability on circuit performance. VariaSim has enabled us to

obtain performance results for specific circuits with specific
technology assumptions.
As an illustrative example, we consider the impact of varia-
tions in only L. Assume that the processor’s frequency is deter-
mined by the integer execution stage. We generate four sets of
1000 chip configurations, where each set has a fixed number of
integer ALUs (borrowed from Sun’s open-source Niagara T1
[13]) ranging from 1 to 4. We generate the different chip con-
figurations considering both spatial and random variations in
L, with a nominal value Lnom= 65nm and a total variability of
40% of Lnom. We used VariaSim to determine the delays for all
of the chips, and then we binned the chips into 8 bins that are
equally spaced between 0.7*fnom and 1.4*fnom, where fnom is
the frequency of one ALU in the absence of process variabil-
ity. As shown in Figure 1, increasing the number of ALUs
increases the likelihood that one or more will be slower than
fnom and thus lead to a slower clock. In this paper, we avoid
slowing the clock to satisfy the slowest ALU. For example, for
the 4-ALU chips, we can use our techniques to treat the k
slowest ALUs as being 2-cycle units (i.e., k/4 of the units are
considered slow). This approach can maintain high clock fre-
quencies with only small degradations in IPC, leading to an
overall performance increase compared to just speed binning.
For this paper, we are reluctant to commit ourselves to any
assumptions about the technology, especially because our
work is independent of these exact details. Rather, we parame-
terize variability (e.g., X% of cache frames or registers are
slow), so that we can abstract away the low-level physical phe-
nomena that cause variability. This is a technique previously
used in other academic studies, due to the lack of publicly
available information from industry. We sweep over the range
of possible variabilities (e.g., 5-40% slow cache frames or reg-
isters) that are probable for a given technology.

3. EXPERIMENTAL METHODOLOGY
To evaluate our designs, we modified SimpleScalar [2]. For
most of our experiments, we study a superscalar processor that
is modeled roughly after the Alpha 21264 [12]. Table 1 shows
the detailed configuration of the baseline superscalar processor
we model. For a few experiments, we study a simpler, in-order

Figure 1. Speed Binning. Chip frequencies are normalized
with respect to fnom.
2

processor. This in-order processor is 2-wide and uses branch
prediction. Its parameters are the same as those in Table 1,
except it does not have the structures used to coordinate out-
of-order execution.
For benchmarks, we use the complete SPEC2000 benchmark
suite with the reference input set. To reduce simulation time,
we used SimPoint analysis [20] to sample from the execution
of each benchmark.
Quantitatively comparing our approaches to speed binning is
challenging, because we do not have access to industrial data
on the probability distributions of access latencies, but we can
explore several Gaussian distributions with various standard
deviations. After cutting off the slowest X% at the tail end of
the distribution (i.e., treating them as “slow”), we determine
how fast we can clock the processor. We compare this result to
the 99.5% point (worst case), and we consider the remaining
0.5% defective and assume they will be discarded during pro-
duction testing. As the standard deviation increases, the differ-
ential between the (100-X)% point and the 99.5% point
increases, favoring our approaches. Compared to speed bin-
ning, our approaches may have slightly lower IPC, but our
clock frequency is greater.

4. REGISTER FILE
Due to process variability, we assume that accesses to some
physical registers take more or less time than accesses to other
physical registers. We assume that production testing or built-
in self-test (BIST) can determine the access latencies of each
register and store it for future reference. We set the clock fre-
quency such that the majority (e.g., 80%) of the registers can

be accessed within one cycle. The remaining registers are
“slow” and take one additional cycle to access.
Existing options for dealing with variability in register file
access latency all have significant drawbacks. Speed binning
can slow the entire processor, and deconfiguration of slow reg-
isters reduces the effective size of the register file. Pessimistic
design leads to a 2-cycle access latency for all registers, which
has several negative implications. First, when register reads
are on the critical path, performance will be degraded. Second,
the extra latency of each read and write will double the conten-
tion for the register file and force the implementation to either
pipeline the register file access or add ports.
Recently, Liang and Brooks [16] developed a scheme for steer-
ing register reads to faster port/register combinations. They
add multiplexors and logic to enable an instruction to read
both of its register operands from fast port/register combina-
tions when possible. Unlike their work, we assume that latency
is a function of the register (not the port/register pair), and we
address the issue of register writes, which they explicitly left
for future work. We also avoid the use of multiplexors on the
pipeline’s critical path.
Another option is to pipeline the register file, but this solution
is more difficult to implement and expensive than our
approach. Pipelining also does not help register read latency.

4.1 Criticality-Based Register Allocation
Our approach, criticality-based register allocation (CRA), tries
to steer critical instructions to the fast (1-cycle) registers.
Because the performance of non-critical instructions has little
or no effect on program performance, we want critical instruc-
tions to have priority for the fast registers.
To identify critical instructions, we borrow the previously
developed instruction criticality predictor from Fields et al.
[8]. This predictor has as many entries as the ROB (80), and
each entry is 24 bits. Because of its small size, its access
latency is short—even in the presence of significant process
variability—and can be overlapped with the first stage or two
of the front end.
When a critical instruction reaches the Rename stage, its desti-
nation register is renamed to a free fast register, if one is avail-
able. CRA does not ensure that critical instructions will read
from fast registers, because we do not control which registers
are read. However, by having a critical instruction, A, write to
a fast register, we enable instructions dependent on A to read
A’s output from a fast register or the operand bypass network.
Because A is critical, it is likely that at least one instruction
that reads its output is also critical. If one of these critical
dependent instructions must read A’s result from the register
file (instead of from the bypass network), then CRA succeeds.
We implement CRA by separating the “Free Register List”
into two separate lists, one for fast registers and one for slow
registers, as illustrated in Figure 2. When deallocating a regis-
ter, the processor looks up whether it is a fast or slow register
in order to modify the appropriate free list. CRA must tolerate
the fact that register accesses, both reads and writes, may take
either one cycle or two cycles.

Table 1. Parameters of Superscalar Processor

Feature Details

pipeline stages 8: fetch, decode, rename, issue,
regread, execute, writeback,
commit

width: fetch,issue,
commit

4, 4int/2fp, 4

branch predictor Gshare: 8-entry BHR,
BHT has 4K 2-bit entries

instruction window 20 int, 15 fp

physical register file 80 int, 72 fp

reorder buffer 80 entries

load/store queue 32 load, 32 store

integer units 4 ALUs (1 cycle), 1 mult (7), 1
divide (7)

floating point units 2 ALUs (4 cycles), 1 mult (4), 1
divide (12), 1 sqrt (24)

L1 I-Cache 32KB, 2-way, 1 cycle

L1 D-Cache 32KB, 4-way, 1 cycle

L2 cache (unified) 2MB, 8-way, 14 cycles

memory 120 cycles
3

4.1.1 Reads
Like Liang and Brooks [16], when an instruction reads one or
two slow input registers, the instruction is stalled for an addi-
tional cycle before it can execute. This stall propagates back-
wards to prevent other instructions from trying to use the busy
read port(s). If we are frequently accessing slow registers,
which could happen if there is a lot of pressure on the register
file and many reads are to slow registers, then this added occu-
pancy will increase contention for read ports. We may have to
add read ports if we expect this situation to arise frequently,
but ports incur significant area and delay costs.

4.1.2 Writes
CRA incurs fewer slow (2-cycle) writes than an oblivious
approach that treats all registers equally, because the renaming
of destination registers is prioritized to choose fast registers.
However, the possibility of any slow writes presents a correct-
ness issue. Consider the latch between the output of a 1-cycle
functional unit and the register write port. If the write takes
two cycles, then the ALU could potentially overwrite the
latched value before it completes writing to the register file.
We present three solutions to this problem, in increasing order
of performance and complexity.
Always Pessimistic. An overly simplistic solution is to have
the scheduler always treat the functional unit as a 2-cycle com-
ponent instead of 1-cycle. This solution incurs a significant
performance penalty.
Stall Functional Unit if Slow Write. The scheduler keeps
track of when a functional unit will be writing to a slow regis-
ter (for instruction A) and then does not schedule that func-
tional unit (for some later instruction in program order, say
A+1, although in a superscalar processor it could be some
other instruction) for an additional cycle. This improved solu-
tion still potentially hurts performance by preventing the func-
tional unit from producing A+1’s result, which could be
consumed by its dependent instructions (even if a write port is
not yet available). For our target system, performance degrada-
tion due to this effect is minimal, so we use this fairly simple
approach in our experiments.

4.2 Evaluation
The goal of these experiments is to determine the potential of
CRA to mitigate the impact of process variability in the regis-
ter file. We provide enough read and write ports to avoid com-
mon-case contention (i.e., in the absence of variability), but
there can be contention due to slow reads and writes.
We compare CRA performance to four other options: speed
binning, pessimistic design (assuming all register accesses
take two cycles), deconfiguration (not using slow registers),
and simply using the slow registers but without CRA’s alloca-

tion policy. We do not quantitatively compare to Liang and
Brooks, due to our different assumptions about how variability
manifests itself and because they do not consider variability in
write access latencies.
In Figure 3, we compare the performance of CRA to simple
speed binning, using the methodology explained in Section 3.
For CRA, we allow the slowest 20% of the registers to be
“slow”. We average across the SpecINT and SpecFP bench-
marks in order to present a tractable amount of data. The x-
axis represents the amount of variability (sigma/mean) in reg-
ister access latency1, and the y-axis is CRA’s speedup (in units
of instructions per second) with respect to speed binning. As
variability increases, CRA achieves increasing speedups,
because it does not need to slow its clock down appreciably
and it only incurs slight IPC degradation. Speed binning main-
tains a constant IPC but sacrifices clock frequency.
In Figure 4, we compare CRA to the other three options. The
results are presented as slowdowns with respect to an ideal
processor with no process variability (i.e., all registers are
fast). The results reveal that pessimistic design performs
poorly, but that the average slowdowns for the other three
approaches are modest until 20% of the registers are slow.
CRA is somewhat better, on average. However, the min/max
bars reveal that CRA’s worst-case is far better than the other

Fetch Decode Rename
rest of the pipeline

slow
free list

fast
free list

Figure 2. CRA: Register Allocation

criticality
predictor

1. Sigma/mean is the coefficient of variation.

Figure 3. Speedup of CRA with respect to speed binning

Figure 4. CRA Performance. Error bars represent the
min/max across the benchmarks.The min bars do not include
mcf, because its value is near zero and obscures the other data.
4

options. Furthermore, as the fraction of slow registers
increases, both CRA’s average and worst-case become increas-
ingly favorable as compared to the other options.

5. FUNCTIONAL UNITS
Due to variability, it is likely that some functional units (FUs)
will operate more slowly than others. These FUs include inte-
ger and floating point adders, multipliers, and dividers. Our
goals are similar to those for the register file. We want to avoid
slowing down the clock to the entire chip to accommodate a
slow FU. As with CRA, we also want to avoid deconfiguring
(mapping out and never using) a slow FU, because it is still
useful. We assume that we can speed test the FUs during pro-
duction test (BIST is generally only used for memory struc-
tures) and upload this information into the processor.

5.1 Criticality-Based FU Allocation
We address this problem by allowing a functional unit that is
substantially slower than other identical FUs to take one or
more additional cycles. For example, a nominally 1-cycle
adder could be extended to 2 cycles. A 7-cycle fully-pipelined
multiplier could be extended to somewhere between 8 and 14
cycles, depending on how many of its stages could be slow.
For example, if any of the 7 stages could be slow, then a sim-
ple solution is to allow every stage to take two cycles, thus
extending the total latency to 14 cycles
To allow variable latency FUs, we must address two issues.
First, we must avoid putting slow FUs on the critical path of a
program’s execution. Second, the instruction scheduler must
accommodate variable latencies.
Our scheme is criticality-based functional unit allocation
(CFUA). We make a small modification to the instruction
scheduling logic (refer to Brown et al.’s baseline scheduler as
an example [4]) to enable it to handle two possible cycle laten-
cies for each FU. Schedulers can already handle FUs with dif-
ferent cycle latencies, such as 1-cycle ALUs and multi-cycle
multipliers and floating point units. The difference for CFUA
is that a FU may take either its nominal number of cycles, C,
or more cycles, and the scheduler will not know this until after
the chip has been fabricated and tested. Instead of hardwiring
into the scheduler that a given FU takes C cycles, we use a
multiplexor to choose between C and the slow scenario (which
is between C+1 and 2C cycles), depending on the results of
the production test. Thus, the scheduler will wait the correct
number of cycles before scheduling dependent instructions.
CFUA does not affect the operand bypass network, because
we introduce no new bypass paths. The output of a slow FU
can still be forwarded to the inputs of the other FUs (as
before), using the same wires and muxes. Our proposed
changes focus on the scheduler itself and do not add complex-
ity to the forwarding logic.

5.2 Evaluation
We compare the performance of CFUA to speed binning, pes-
simistic design (all FUs are slow), allowing some FUs to be
slow but without criticality-based allocation, and deconfigura-
tion of slow FUs. We vary the number of ALUs and FPUs that

are slow. We do not consider the multipliers or dividers,
because their performance is generally not critical. We assume
full pipelining of the FUs, and we assume that slow FUs take
only C+1 cycles, which is the minimum extra latency and
favors pessimistic design (rather than CFUA).
Figure 5 shows CFUA’s speedup with respect to speed bin-
ning. In this experiment, we assume that two ALUs are slow
and one FPU is slow. We observe that CFUA consistently out-
performs speed binning, with the benefit increasing as the
amount of variability increases.
In Figure 6, we compare CFUA to the other techniques, and
the results are shown as slowdowns with respect to an ideal
processor with no process variability (i.e., all FUs are fast).
The results reveal that CFUA outperforms the other options,
especially when considering the worst-case benchmarks.
CFUA thus enables aggressive clocking by hiding the impact
of the slow FUs. Another observation is that deconfiguring
slow FUs is often preferable to using them, because critical
computations will always use fast FUs (if they are available).

6. L1I AND L1D CACHES
The last structures that we address in this work are the L1I and
L1D caches. We assume that, due to process variability, the
access times for different cache frames will differ. This
assumption, which is the same as in most of the literature (e.g.,
Agarwal et al. [1]), reflects variability in storage cells, word
decoders, and word lines. Variability in a bit line or sense amp

Figure 5. Speedup of CFUA with respect to speed binning

Figure 6. CFUA Performance. Error bars represent the
min/max across the benchmarks.
5

will manifest as a slow column (i.e., a slow bit in all frames)
within a given bank of the L1. One or more slow bits in a
frame causes that frame to be slow. Because of three scenar-
ios—slow columns, spatially correlated variability, and vari-
ability in the decoders that choose which cache set to access—
we also consider the situation in which slow frames are clus-
tered (rather than randomly spread). We assume the processor
can determine which frames are slow during production test-
ing (or BIST) and store this information for future reference.
We now describe a method to aggressively clock the processor
while not forcing all L1 accesses to pessimistically take one or
more extra cycles. We deconfigure slow frames (in
Section 6.5, we discuss a more complicated design that keeps
the slow frames), but we overcome this loss of frames by
prefetching into very small L1I and L1D prefetch buffers (e.g.,
2-16 frames, similar in size to a victim cache [11]) that have
only fast frames. We can guarantee that an L1 prefetch buffer
(L1-PB) has only fast frames, despite variability, by deconfig-
uring slow frames in the L1-PB (e.g., build with 10 frames and
deconfigure the slowest 2). By using only simple prefetchers,
we can also guarantee that they are fast, even in the presence
of variability. Because we are trying to prefetch blocks into an
L1-PB that could otherwise end up in slow L1 frames, we refer
to our scheme as Slow Frame Prefetching (SFP). We illustrate
the SFP cache hierarchy in Figure 7.
SFP combines two well-known ideas, prefetching and prefetch
buffers, that were previously developed for other purposes.
Prefetching hides memory access latency, and we leverage
existing prefetchers to avoid adding extra variables into our
experiments. Prefetch buffers have been used to prevent pol-
luting the cache with unnecessarily prefetched blocks. SFP’s
contribution is not the prefetcher or the prefetch buffer; rather,
it is the idea to prefetch blocks into the prefetch buffer in order
to avoid L1 misses that would occur because of having decon-
figured slow L1 frames.

6.1 Operation
We specify the SFP cache hierarchy operation in Table 2, for
an L1 and L1-PB that both use LRU replacement. The L1 and
L1-PB are accessed in parallel in one cycle, and it is only pos-
sible to hit in one or the other or miss in both, but an access
cannot hit in both the L1 and L1-PB. If all blocks in an L1 set
are deconfigured, an access will either hit in the L1-PB or be
forced to access the L2 (bypassing the L1). A miss in both the
L1 and L1-PB has a performance penalty equal to that of an
L1 miss in a system without an L1-PB.

There are two aspects of SFP operation that are worthy of fur-
ther discussion. First, when an access misses in both the L1
and the L1-PB, SFP must decide where to put the block when
it arrives from the L2. If the least-recently-used frame in the
L1 is fast, then we fill it, just like in a non-SFP system. Other-
wise, we place the block in the L1-PB, even though this fill is
not actually due to a prefetch.
The second unusual aspect of SFP cache operation is the pol-
icy for updating the L1’s LRU bits. We maintain the LRU bits
for all frames in an L1 cache set, not just the fast frames. The
situation that differs from non-SFP systems is an L1-PB hit. In
this situation, the L1’s LRU frame is moved to the most-
recently-used position. This policy ensures that, in a cache set
with at least one fast and one slow frame, a block in a fast
frame will eventually become least-recently-used and then get
replaced. Intuitively, for purposes of updating the L1’s LRU
bits, we pretend that we are actually using the slow L1 frames.
We assume that a hit in the L1-PB is like an L1 miss that
caused the L1’s LRU frame to be replaced in favor of the
newly accessed block. This assumption is not always cor-
rect—for example, an L1-PB hit could have been to the same
block as the previous access—but it works well and there are
no correctness issues for LRU bit updates.

6.2 Prefetch Buffer Structure
We assume that the L1I-PB and L1D-PB are fully-associative
with LRU replacement. The L1-PBs are write-allocate, and
they must participate in cache coherence. It is important to
note that the number of frames in an L1-PB can be signifi-
cantly less than the number of slow frames in the L1 and still
provide a large benefit. The key is that programs generally do
not touch all the slow frames in the L1 at the same time.

6.3 L1 Instruction Cache Specifics
L1I cache performance is critical to microprocessor perfor-
mance. L1I caches are almost always either 1-cycle or pipe-
lined such that an access can be initiated every cycle.
We use a simple next-block prefetcher to bring blocks into the
L1I-PB. The choice of prefetcher is independent of SFP, but a
better prefetcher would lead to better results for SFP.

core

L1I L1I-PB

Unified L2

L1D L1D-PB

Figure 7. SFP Cache Hierarchy

Table 2. SFP operation for loads/stores

L1 L1-PB actions

hit miss 1-cycle L1 access; update L1’s LRU bits

miss hit 1-cycle L1-PB access;
update L1-PB’s LRU bits;
move LRU slow frame in L1 to MRU

miss miss access L2;
if (LRU frame in L1 is fast)
 fill it;
else
 fill PB, update L1-PB’s LRU bits;
move LRU frame in L1 to be MRU;

hit hit impossible
6

6.4 L1 Data Cache Specifics
The criticality of L1D cache latency depends on the processor
model. For dynamically scheduled (out-of-order) superscalar
processors, the latency of non-critical L1D hits can often be at
least partially hidden while the processor works on other
instructions [21]. However, for in-order cores, such as Niagara
T1 [13], the L1D latency is on the critical path. It is likely that
future multicore processors will have a mix of in-order and
out-of-order cores, in order to not exceed power constraints,
and thus the latency of the L1D is important.
To prefetch into the L1D-PB, we use a simple stride
prefetcher. A more sophisticated prefetcher, such as a Markov
prefetcher [10] or dead block prefetcher [14], would likely
improve SFP’s results.

6.5 Alternative Design Points
We now discuss three other design points.
Full Pipelining. It might appear that pipelining the L1 would
make pessimistic design (adding one or more cycles to each
access) an almost penalty-free design option. With pipelining,
the latency of each L1 access increases, but the core can still
initiate one access per cache port per cycle. This latency pen-
alty is not too problematic, because extra L1I cycles just
increase the branch misprediction penalty, and extra L1D
cycles can often be hidden by the out-of-order core [21]. How-
ever, a problem arises because caches cannot be pipelined
arbitrarily finely; one cannot latch the weak bitline signals
before they are amplified by the sense amps [5]. To achieve
fast clock frequencies, architects break the L1 into sub-arrays
such that the delay for the bitlines and sense amps just fits
within the desired clock period. A pessimistic design approach
would thus have to allocate two cycles for this delay, to
accommodate the possibility of delay variability. This delay
not only affects L1 access latency, which is not too painful, but
also affects the more important L1 throughput. One could sub-
bank the L1 even more finely, but increased sub-banking even-
tually increases access latency.
Using Spare Frames. For fault tolerance, some caches have a
small number of spare frames. One could imagine using these
spares like SFP uses the L1-PB. The key problem with using
spares, though, is that it requires a level of indirection on the
critical path of all accesses.
SFP without Deconfiguration of Slow Frames. One could
imagine implementing SFP without deconfiguring the slow L1
frames. In such a scheme, an L1-PB miss that hits in a slow L1

frame would avoid the greater penalty of an L1 miss. However,
there are two problems with this approach. First, handling
slow tag array accesses is difficult, because we do not know if
the access is a slow hit before we potentially want to start a
subsequent access. We could use testing to identify slow tags
and keep this information in a table, but we still would not
know about tag matches. Second, if the cache is pipelined,
testing will not reveal which of the stages is slow, so we would
pessimistically have to assume that all of them are slow. Our
results suggest that the added complexity of solving these
problems is not worth the effort; however, for future system
configurations, we may wish to re-visit this design option.

6.6 Evaluation
In this section, we evaluate the performance benefit of SFP.
There are many variables to consider, but we focus only on
variables that are particularly relevant to SFP. Thus we fix the
cache sizes (32KB) and cache block size (32 bytes). The vari-
ables we explore are: L1-PB cache size, L1 cache set-associa-
tivity (always using LRU replacement), the fraction of L1
cache frames that are slow, and whether slow L1 cache frames
are spatially clustered. Another potentially interesting variable
is the nominal number of cycles for an L1 access latency, C,
but space constraints preclude analyzing sensitivity to this
parameter. We fix C at 1-cycle for both the L1I and L1D.
We compare SFP to three options: speed binning, deconfigura-
tion of slow L1 frames but without an L1-PB (similar to Agar-
wal et al. [1]), and pessimistic design. All design options and
the baseline (all fast frames) use the same prefetcher, in order
to balance the comparison; the non-SFP schemes prefetch into
the L1, whereas SFP prefetches into the L1-PB. For pessimis-
tic design, all accesses take two cycles with the pipeline depth
limited by the bitline and sense amp delay. Groups of fetched
instructions are available every two cycles.

6.6.1 L1I Cache
In our first experiments, we study a baseline configuration in
which the L1I is 2-way set-associative and the L1I-PB has 8
frames. For now, we fix the fraction of L1I frames that are
slow at 20% and we assume that slow entries are randomly
distributed throughout the L1I.
We plot the speedup of SFP for the L1I, with respect to speed
binning, in Figure 8. The results show that for very small
amounts of variability, speed binning is actually slightly pref-
erable. However, as the amount of variability increases, SFP
outperforms speed binning by a substantial margin. We will
not present speed binning results for the L1D, because the data
is quite similar.
In Figure 9, we compare SFP to the other techniques. The fig-
ure plots slowdowns with respect to the ideal case (all fast
frames), and it reveals that both pessimistic design and decon-
figuration can degrade performance by a significant amount.
Pessimistic design is usually preferable to deconfiguration, but
it still averages slowdowns of 19% and 13% for the integer and
floating point benchmarks, respectively. SFP with only an 8-
frame L1I-PB achieves slowdowns of only 5% and 1%,
respectively. Looking at individual benchmarks, we often
observe even greater disparity between SFP and its alterna-
tives. For swim, bzip, and galgel, the best choices of the alter-

Figure 8. L1I Cache: Comparing SFP to Speed Binning
7

natives have penalties of 20-45%, whereas SFP has a
slowdown less than 1%. These benchmarks are particularly
sensitive to slow and deconfigured frames.
In our next experiment, we study the impact of both L1I set-
associativity and L1I-PB size. We continue for now to fix the
fraction of slow L1I frames at 20% and assume a random dis-
tribution of slow frames. In Figure 10, we show the results,
averaged across the benchmarks. The “error bars” represent
the min/max across the benchmarks. We observe that having
only two L1I-PB frames is sufficient except in the case of a
direct-mapped L1I. A set-associative cache is less sensitive to
having deconfigured frames, because it incurs fewer conflict
misses. The need for just a few L1I-PB frames makes SFP a
low-cost design option.
In our final L1I experiment, we explore different fractions of
slow frames and the effect of spatial correlations. For spatial
correlations, we assume that all frames in certain randomly-
chosen sets are slow. Figure 11 shows the results for SFP and
pessimistic design (for comparison), averaged across the
benchmarks, and we observe a few phenomena. First, SFP
maintains average slowdowns less than 3% as long as the frac-
tion of slow frames is no more than 10%. Second, SFP is pref-
erable, on average, to pessimistic design in all cases except

40% spatial. Third, when the fraction of slow frames is as high
as 20% or 40%, spatial correlations become more problematic
for SFP, particularly for the worst-case benchmarks. These
results suggest that we can use SFP to aggressively clock the
L1I, but probably not beyond the point of 20% slow frames.

6.6.2 L1D Cache
We perform the same set of experiments for the L1D cache as
we did for the L1I cache, except we omit the speed binning
comparison. Because our experiments confirmed that variabil-
ity matters far less for out-of-order cores than for in-order
(data not shown due to space constraints), we only present
results for an in-order core in this section. The results are in
Figures 12 through 14.
In Figure 12, we observe that SFP is only slightly better than
deconfiguration, on average, for the floating point bench-
marks. The biggest advantage is only about 4%, and SFP has
some negligibly slight disadvantages (<1%) on two bench-
marks. However, for the integer benchmarks, SFP offers sub-
stantial gains over the other options. In particular, SFP has a
huge advantage for eon, mcf and gcc, and it has a non-trivial
advantage for vortex, gap, and bzip. These benchmarks are
sensitive to L1D size and lose substantial performance due to
deconfigured frames, even with prefetching.

Figure 9. L1I Cache: Comparison of Pessimistic Design, Deconfiguration, and SFP. Slowdown results are with respect to
case when all accesses are 1-cycle.

Figure 10. L1I Cache: Sensitivity to L1I set-associativity
and L1I-PB size. Slowdown results are with respect to case
with all 1-cycle accesses.

Figure 11. L1I Cache: SFP’s Sensitivity to Fraction of
Slow Frames. Slowdown results are with respect to case
with all 1-cycle accesses.
8

Figure 13 reveals that SFP can, on average, tolerate small
L1D-PB sizes. However, for a 2-way L1D, there are some
benchmarks for which the L1D-PB needs to have at least 16
frames. The 4-way L1D does not benefit much from having an
L1D-PB greater than 8 frames.
Figure 14 shows a much greater impact of spatial correlations
than was the case for the L1I. For random variability, SFP
incurs little IPC loss even when 20% of the frames are slow.
However, spatial correlations are much more problematic,
especially for greater than 5% slow.

7. RELATED WORK
There is related work in the areas of mitigating the impact of
process variability on performance and timing speculation.
Mitigating Impact on Performance. Agarwal et al. [1]
deconfigure slow cache frames. Ozdemir et al. [18] deconfig-
ure slow portions of the L1 cache to improve yield, and they
also consider letting some accesses take an additional cycle.
Das et al. [6] use a substitute cache (SC) to hold critical words.
Like SFP’s L1-PB, the SC is accessed in parallel with the L1.
Unlike SFP, the SC holds words (not blocks) and does not
leverage prefetching. Liang and Brooks [15, 16] explore how

to mitigate the impact of variability on floating point units
(FPUs) and register file read accesses. For pipelined multi-
cycle FPUs, they use time borrowing between stages, and they
add an extra set of latches that can be used to add an extra
stage to the FPU pipe. By adding a stage, they can avoid slow-
ing the clock if variability causes the FPU to be slower than
nominal. For the register file, they steer read accesses such that
fast entry/port combinations are prioritized. They do not con-
sider register file writes. ReCycle [22] extends the idea of time
borrowing across pipeline stages to include the entire pipeline.
Time borrowing is orthogonal to our work; if we can mitigate
the impact of variability within a structure, we make time bor-
rowing easier by requiring less slack to borrow. In general,
though, time borrowing is difficult, because slow stages are
vastly more likely than fast stages.
Timing Speculation. Razor flip-flops [7] and X-Pipe flip-
flops [24], which were designed for timing speculation (i.e.,
avoiding worst-case design), can help to mitigate the impact of
variability. For flip-flops that could suffer timing problems due
to being clocked at the end of a critical or near-critical path,
they add a shadow flip-flop that is clocked a half cycle later. If
the two flip-flops hold different data, then a timing problem
occurred and the processor recovers. However, if a Razor flip-

Figure 12. L1D Cache: Comparison of Pessimistic Design, Deconfiguration, and SFP. Slowdown results are with respect
to case when all accesses are 1-cycle.

Figure 13. L1D Cache: Sensitivity to L1D set-
associativity and L1D-PB size

Figure 14. L1D Cache: Sensitivity to Fraction of
Slow Frames
9

flop is on a frequently used path that is too slow due to process
variability, then the processor will suffer many recoveries and
incur a significant performance degradation. Also, the Razor
approach cannot be used on circuit paths that could be shorter
than half of a clock cycle.

8. CONCLUSIONS
In this paper, we have developed techniques for alleviating the
impact of process variability on register files, functional units,
and L1 caches. In fact, our schemes enable us to clock proces-
sors aggressively instead of being bottlenecked by slow com-
ponents. We believe that architectural techniques such as these
will be crucial for enabling future, more variability-prone
CMOS technologies to provide increasing performance.

ACKNOWLEDGMENTS
This material is based on work supported by the National Sci-
ence Foundation under grants CCF-0444516, CCF-0545456,
CCF-0540994, and EIA-9972879, the National Aeronautics
and Space Administration under grant NNG04GQ06G, and
Intel Corporation. We thank Brian Fields for graciously shar-
ing his criticality predictor with us. We thank Ismet Bayrak-
taroglu for helpful feedback.

REFERENCES
[1] A. Agarwal et al. Process Variation in Embedded

Memories: Failure Analysis and Variation Aware
Architecture. IEEE Journal of Solid-State Circuits,
40(9):1804–1814, 2005.

[2] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
Infrastructure for Computer System Modeling. IEEE
Computer, 35(2):59–67, Feb. 2002.

[3] S. Borkar. Designing Reliable Systems from
Unreliable Components: The Challenges of Transistor
Variability and Degradation. IEEE Micro, 25(6):10–
16, Nov/Dec 2005.

[4] M. D. Brown, J. Stark, and Y. N. Patt. Select-Free
Scheduling Logic. In Proc. 34rd Annual I Int’l Symp.
on Microarchitecture, pages 204–213, Dec. 2001.

[5] Z. Chishti and T. N. Vijaykumar. Wire Delay is Not a
Problem for SMT (in the near future). In Proceedings
of the 32nd Annual International Symposium on
Computer Architecture, pages 40–51, June 2005.

[6] A. Das, S. Ozdemir, G. Memik, J. Zambreno, and
A. Choudhary. Microarchitectures for Managing Chip
Revenues under Process Variations. IEEE Computer
Architecture Letters, June 2007.

[7] D. Ernst et al. Razor: A Low-Power Pipeline Based on
Circuit-Level Timing Speculation. In Proc. 36th
Annual Int’l Symp. on Microarchitecture, Dec. 2003.

[8] B. Fields, S. Rubin, and R. Bodik. Focusing Processor
Policies via Critical-Path Prediction. In Proceedings of
the 28th Annual International Symposium on Computer
Architecture, pages 74–85, July 2001.

[9] International Technology Roadmap for
Semiconductors, 2003.

[10] D. Joseph and D. Grunwald. Prefetching Using
Markov Predictors. In Proc. 24th Annual Int’l Symp. on
Computer Architecture, pages 252–263, June 1997.

[11] N. P. Jouppi. Improving Direct-Mapped Cache
Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers. In Proc. 17th
Annual Int’l Symp. on Computer Architecture, pages
364–373, May 1990.

[12] R. E. Kessler. The Alpha 21264 Microprocessor. IEEE
Micro, 19(2):24–36, March/April 1999.

[13] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara:
A 32-way Multithreaded SPARC Processor. IEEE
Micro, 25(2):21–29, Mar/Apr 2005.

[14] A.-C. Lai, C. Fide, and B. Falsafi. Dead-Block
Prediction & Dead-Block Correlating Prefetchers. In
Proceedings of the 28th Annual International
Symposium on Computer Architecture, July 2001.

[15] X. Liang and D. Brooks. Latency Adaptation of
Multiported Register Files to Mitigate Variations. In
Proceedings of the Workshop on Architectural Support
for Gigascale Integration, June 2006.

[16] X. Liang and D. Brooks. Mitigating the Impact of
Process Variations on Processor Register Files and
Execution Units. In Proc. 39th Annual Int’l Symposium
on Microarchitecture, Dec. 2006.

[17] S. Nassif. Design for Variability in DSM
Technologies. In Proc. of First Int’l Symp. on Quality
of Electronic Design, pages 451–454, Mar. 2000.

[18] S. Ozdemir et al. Yield-Aware Cache Architectures. In
Proceedings of the 39th Annual Int’l Symposium on
Microarchitecture, pages 15–25, Dec. 2006.

[19] B. F. Romanescu, M. E. Bauer, S. Ozev, and D. J.
Sorin. VariaSim: Simulating Circuits and Systems in
the Presence of Process Variability. Technical Report
2007-3, Department of Electrical and Computer
Engineering, Duke University, June 2007.

[20] T. Sherwood et al. Automatically Characterizing Large
Scale Program Behavior. In Proc. of the Tenth Int’l
Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 2002.

[21] S. T. Srinivasan and A. R. Lebeck. Load Latency
Tolerance in Dynamically Scheduled Processors. In
Proc. of the 31st Annual International Symposium on
Microarchitecture, pages 148–159, Nov. 1998.

[22] A. Tiwari, S. R. Sarangi, and J. Torrellas. ReCycle:
Pipeline Adaptation to Tolerate Process Variability. In
Proceedings of the 34th Annual International
Symposium on Computer Architecture, June 2007.

[23] J. W. Tschanz et al. Adaptive Body Bias for Reducing
Impacts of Die-to-Die and Within-Die Parameter
Variations on Microprocessor Frequency and Leakage.
IEEE Journal of Solid-State Circuits, 37(11):1396–
1402, Nov. 2002.

[24] X. Vera, O. Unsal, and A. Gonzalez. X-Pipe: An
Adaptive Resilient Microarchitecture for Parameter
Variations. In Proc. of the Workshop on Architectural
Support for Gigascale Integration, June 2006.
10

	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. INTRODUCTION
	2. PROCESS VARIABILITY
	2.1 Impact of Process Variability
	2.2 Modeling Process Variability
	Figure 1. Speed Binning. Chip frequencies are normalized with respect to fnom.

	3. EXPERIMENTAL METHODOLOGY
	Table 1. Parameters of Superscalar Processor

	4. REGISTER FILE
	4.1 Criticality-Based Register Allocation
	4.1.1 Reads
	Figure 2. CRA: Register Allocation

	4.1.2 Writes
	Always Pessimistic
	Stall Functional Unit if Slow Write

	4.2 Evaluation
	Figure 3. Speedup of CRA with respect to speed binning
	Figure 4. CRA Performance. Error bars represent the min/max across the benchmarks.The min bars do not include mcf, because its value is near zero and obscures the other data.

	5. FUNCTIONAL UNITS
	5.1 Criticality-Based FU Allocation
	5.2 Evaluation
	Figure 5. Speedup of CFUA with respect to speed binning
	Figure 6. CFUA Performance. Error bars represent the min/max across the benchmarks.

	6. L1I AND L1D CACHES
	6.1 Operation
	Table 2. SFP operation for loads/stores
	Figure 7. SFP Cache Hierarchy

	6.2 Prefetch Buffer Structure
	6.3 L1 Instruction Cache Specifics
	6.4 L1 Data Cache Specifics
	6.5 Alternative Design Points
	Figure 8. L1I Cache: Comparing SFP to Speed Binning
	Full Pipelining
	Using Spare Frames
	SFP without Deconfiguration of Slow Frames

	6.6 Evaluation
	6.6.1 L1I Cache
	Figure 9. L1I Cache: Comparison of Pessimistic Design, Deconfiguration, and SFP. Slowdown results are with respect to case when all accesses are 1-cycle.
	Figure 10. L1I Cache: Sensitivity to L1I set-associativity and L1I-PB size. Slowdown results are with respect to case with all 1-cycle accesses.
	Figure 11. L1I Cache: SFP’s Sensitivity to Fraction of Slow Frames. Slowdown results are with respect to case with all 1-cycle accesses.

	6.6.2 L1D Cache
	Figure 12. L1D Cache: Comparison of Pessimistic Design, Deconfiguration, and SFP. Slowdown results are with respect to case when all accesses are 1-cycle.
	Figure 13. L1D Cache: Sensitivity to L1D set- associativity and L1D-PB size
	Figure 14. L1D Cache: Sensitivity to Fraction of Slow Frames

	7. RELATED WORK
	Mitigating Impact on Performance
	Timing Speculation

	8. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

	Reducing the Impact of Intra-Core Process Variability with Criticality-Based Resource Allocation and Prefetching
	Bogdan F. Romanescu, Michael E. Bauer, Sule Ozev, and Daniel J. Sorin
	Department of Electrical and Computer Engineering
	Duke University
	P.O. Box 90291
	Durham, NC 27708, USA
	{bfr2, meb26, sule, sorin}@ee.duke.edu

