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Abstract
A key problem in parallel programming is how data is parti-
tioned: divided into subsets that can be operated on in paral-
lel and, in distributed memory machines, spread across mul-
tiple address spaces.

We present a dependent partitioning framework that al-
lows an application to concisely describe relationships be-
tween partitions. Applications first establish independent
partitions, which may contain arbitrary subsets of applica-
tion data, permitting the expression of arbitrary application-
specific data distributions. Dependent partitions are then
derived from these using the dependent partitioning oper-
ations provided by the framework. By directly capturing
inter-partition relationships, our framework can soundly and
precisely reason about programs to perform important pro-
gram analyses crucial to ensuring correctness and achieving
good performance. As an example of the reasoning made
possible, we present a static analysis that discharges most
consistency checks on partitioned data during compilation.

We describe an implementation of our framework within
Regent, a language designed for the Legion programming
model. The use of dependent partitioning constructs results
in a 86-96% decrease in the lines of code required to de-
scribe the partitioning, eliminates many of the expensive dy-
namic checks required for soundness by the current Regent
partitioning implementation, and speeds up the computation
of partitions by 2.6-12.7X even on a single thread. Addition-
ally, we show that a distributed implementation incorporated
into the the Legion runtime system allows partitioning of
data sets that are too large to fit on a single node and yields a
further 29X speedup of partitioning operations on 64 nodes.
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1. Introduction
The partitioning of the data used by a parallel application
is critical for both performance and scalability. Indepen-
dent subsets of data can be processed concurrently and the
right placement of data within the memory hierarchy min-
imizes data movement. Every general-purpose parallel pro-
gramming model must confront the tension between a pro-
grammer’s desire for expressivity (i.e. the ability to describe
exactly the best partitioning for a given application) and the
compiler and runtime’s need for tractability (i.e. the ability
to perform analysis and optimizations). 1

As an example, consider a distributed computation on a
graph-based data structure, such as the simulation of an elec-
tric circuit. On today’s supercomputers, such computations
are generally limited by data movement over the network be-
tween the systems in the cluster. The resulting importance of
the distribution of data (the nodes and edges of the circuit’s
graph) to different processes (ranks) is such that it is worth
the expense of computing a near-optimal partitioning of the
data with a graph partitioning tool such as PARMETIS[22]
before running a long simulation. (The hashing or greedy
clustering approaches used by graph processing frameworks
such as Pregel[24] and PowerGraph[19] focus instead on
computing “good enough” partitions quickly.)

In addition to an optimal assignment of graph nodes to
“owner” ranks, data movement is further minimized by com-
puting a partition of the circuit graph’s edges, as well as

1 Domain-specific programming models are often able to compute adequate
partitions themselves (e.g. for computations on graphs[24, 28]), but accept-
able solutions for arbitrary data structures and arbitrary computations over
them are elusive.
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Figure 1: Partitioning of a graph-based computation. The independent partition is in the center, and four dependent partitions
are derived from it.

computing whether nodes are “private” (i.e. only accessed
by the owner rank) or “shared”, and which nodes are “ghost”
nodes for each rank (i.e. accessed by that rank but owned by
another). Figure 1 summarizes the various partitions used
for this computation. These additional partitions may not be
chosen freely, because the application code will in general
be written with assumptions about how the rest of the data is
organized relative to the original partition of the nodes. For
example, a step in the application that iterates over the edges
owned by a rank might require that all the nodes on which
these edges are incident be in the private, shared, or ghost
partitions for that rank.

Existing programming models generally provide abstrac-
tions for partitioning that are at one of the two extremes on
the tractability vs. expressivity spectrum, both of which have
significant drawbacks. One programming model that favors
tractability is Chapel[8], which provides a small set of prim-
itive domain maps such as blocked, cyclic, or replicated dis-
tributions. These domain maps concisely describe common
data distribution patterns for structured data (e.g. computa-
tions on dense arrays or grids). The primitives are easy for
the programmer to specify, and the Chapel compiler and run-
time are able to efficiently analyze how two or more of these
domain maps interact. However, the expressivity of such a
system is limited. For computations on irregular data struc-
tures such as the circuit graph above, the nodes and edges
must be manually ordered into arrays (which often requires
the duplication of ghost nodes) so that they may then be dis-
tributed using the available domain map primitives. The pro-

grammer is solely responsible for maintaining and testing
this mapping — neither the Chapel compiler nor the runtime
can help in guaranteeing correctness.

In contrast, the Legion[5] programming model allows a
logical region to be partitioned into any computable subsets,
thereby maximizing the programmer’s ability to express par-
titioning schemes. This generality is achieved by allowing
arbitrary code (including external libraries) to be used for
partitioning, with only the results of the execution of the
code being provided to the Legion runtime as a coloring. The
Legion runtime is able to perform some consistency checks
on the resulting partitions, but only at runtime — the use of
arbitrary code to compute partitions rules out most attempts
at static analysis. Further, the use of colorings for even sim-
ple partitions prevents the Legion runtime from optimizing
the computation or distributing it across multiple ranks, lim-
iting the size of problem that can be tackled.

Our dependent partitioning framework is a new, middle
ground between these two extremes. We split the partitions
used by an application into two types. Independent partitions
are those that are computed from “scratch” (e.g. the central
node ownership map in Figure 1) and preserve the expres-
sivity benefit of a Legion-like approach, using a filtering op-
eration that is similar to Legion’s colorings, but can work on
distributed data sets, allowing the partitioning performance
to scale with the available computing resources (yielding up
to a 29X speedup in our experiments for partitioning opera-
tions on 64 nodes compared to a single node) and enabling
the partitioning of data sets that do not fit on a single node.



pgrm := stmt+
stmt := idx id = idxexpr;

| field id : idxtype→rngtype;
| function id : basetype→basetype;
| property propstmt;
| val id : basetype;
| for id in idxexpr { stmt+ }
| immutable id [, id+] { stmt+ }
| assert [ propstmt⇒] asrt;

asrt := idxexpr ≤ idxexpr;
| idxexpr ∗ idxexpr;

basetype := int32 | float32 | ptr | bool | . . .
| 〈basetype, basetype〉

idxtype := id
rngtype := basetype | idxtype[+]
idxexpr := ispace( basetype [, constexpr, constexpr])

| idxexpr{ id | id relop constexpr }
| idxexpr{ id | id→id relop constexpr }
| idxexpr→id
| idxexpr←id
| idxexpr & idxexpr
| idxexpr | idxexpr
| idxexpr - idxexpr

propstmt := propexpr relop propexpr
| propstmt ∧ propstmt
| propstmt ∨ propstmt

propexpr := id | id(id) | constexpr
| propexpr + propexpr
| propexpr - propexpr
| propexpr * constexpr
| propexpr / constexpr
| propexpr % constexpr

relop := = | 6=
| < | ≤
| > | ≥

Figure 2: Dependent Partitioning Language grammar

Dependent partitions are the second type, and are those
derived from independent partitions and/or other depen-
dent partitions (e.g. the four smaller partitions in Figure 1).
The computation of these is based on a small set of de-
pendent partitioning operations that are similar in style to
Chapel’s domain maps. They are easy to use, resulting in
dramatic (86-96%) reductions in the amount of application
code needed to compute dependent partitions and can be
optimized by the runtime, resulting in 2.6-12.7X speedups
of these partitioning operations on a single thread. Depen-
dent partitioning operations (described in more detail in Sec-
tion 2) are based on set operations and reachability via point-
ers within the application data, and are carefully chosen to
provide the tools needed by these applications while pre-
serving the ability to perform static analysis, allowing most
consistency checks between the various partitions to be dis-
charged during compilation.

We have designed the dependent partitioning framework
to be general enough to be implemented in any program-
ming model that includes the concepts of stable “names” for
objects (e.g. pointers), sets and subsets of those names, and
fields defined for each object in a set. We evaluate our frame-
work with an implementation in the Regent language[31]
and the Legion runtime[5], and borrow their terminology in
many cases, but a natural mapping exists as well to Chapel
domains and arrays defined over those domains.

The rest of this paper is organized as follows. The ma-
jority of the paper focuses on developing concepts and algo-
rithms for a data partitioning sublanguage. We begin by de-
scribing an abstract Dependent Partitioning Language (DPL)
in Section 2 and give several examples to demonstrate its
expressivity. Section 3 covers the static analysis required to
discharge most consistency checks at compile time and dis-
cusses when and why completeness is sacrificed. The final
parts of the paper describe the integration of DPL into a
full programming language for parallel computation. We de-
scribe the changes made to the Regent compiler (Section 4)
and the Legion runtime (Section 5) to implement the DPL
framework. Section 6 provides our experimental results and
Section 7 places our effort in the context of related work.

2. Dependent Partitioning Language
Figure 2 defines the syntax of an abstract Dependent Parti-
tioning Language (DPL) that we use to describe our frame-
work. DPL is a sublanguage that includes only the features
needed for creating, manipulating and automatically reason-
ing about data partitions. Any full programming language in-
corporating DPL inherits DPL’s capabilities but would also
need additional standard constructs (e.g., while loops, con-
ditionals, etc.) to carry out computations on the data itself.

DPL is an imperative language in which index spaces (i.e.
sets of indices) are computed and tested against constraints.
Program data in DPL is stored in fields, which associate
a value of a specified range type with each index in the
domain index space. The range type may be either a base
type or another index space — in the latter case it may
be null-extended to allow null pointers (which are not a
part of any index space) to be stored. The value associated
with an index in a field may change during a program’s
execution, but at any given point in time a field represents
a mathematical function from its index space to the values
associated with each index. Dually, we can view an index
space as a collection of objects of a given type, fields as
member variables of the type, and an index i as the identity
of an object whose field i→f is stored in f [i].

The actual contents of any field are unimportant in DPL,
as we wish the consistency checks to be valid for all possible
inputs. To simplify the presentation, we omit constructs for
updating fields and instead focus on scopes in which one or
more fields are immutable, in which case multiple computa-
tions based on those fields’ contents are guaranteed to have
used the same values. Outside any of its immutable scopes, a
field is conservatively assumed to change arbitrarily between
every reference.

An implementation of the circuit partitioning example
from Section 1 is given in Figure 3. The code defines an
assignment of circuit nodes to subcircuits and then uses the
graph topology to define the necessary subsets of nodes or
wires (i.e. edges) and verify their internal consistency. The
initial nodes and wires index spaces are declared (lines 1-
2) using the opaque ptr base type. Index space declarations



1 idx nodes = ispace(ptr);
2 idx wires = ispace(ptr);
3 field subcircuit id : nodes→ int32;
4 field in node : wires→ nodes+;
5 field out node : wires→ nodes+;
6

7 val N : int;
8 idx partitions = ispace(int, 0, N);
9

10 immutable subcircuit id, in node, out node {
11 for p in partitions {
12 idx owned nodes = nodes{ n | n→subcircuit id = p };
13 idx owned wires = owned nodes← in node;
14 idx cross wires = wires{ w | w→in node→subcircuit id !=
15 w→out node→subcircuit id };
16 idx all shared = cross wires→ out node;
17 idx my private = owned nodes − all shared;
18 idx my shared = owned nodes & all shared;
19 idx my ghost = (owned wires→ out node) − owned nodes;
20

21 assert (owned wires→ in node) ≤ (my private | my shared);
22 assert (owned wires→ out node) ≤ (my private | my shared |
23 my ghost);
24 assert my private ∗ my shared;
25 }
26 }

Figure 3: Circuit partitioning in DPL

are lexically scoped and once declared, an index space is
immutable. Lines 3-5 declare the fields we need for this
example: an integer subcircuit id for each node and
two node pointers (in node and out node) for each wire.
Note that fields are given function types indexspace→ range
(the + qualifier permits null values).

DPL also includes scalar values, which capture runtime
constants (line 7). A limited form of scalar variable is avail-
able for iteration over the indices in an index space (line 11),
but a loop variable may not be modified in the loop body.

Line 10 declares the fields locally immutable so that we
can compute index spaces from them (lines 12-19) and check
their consistency (lines 21-24). Line 12 uses the (opaque)
contents of the subcircuit id field to filter the origi-
nal nodes index space down to the subset of nodes whose
subcircuit ID match the loop variable i. As mentioned
above, n → subcircuit id can be thought of as a
field lookup of node n, or dually, as a function application
subcircuit id(n). Filter operations use a syntax similar
to set comprehensions, with the domain of the variable being
limited to the index space to which the filter operation is be-
ing applied (i.e. nodes in this case). A filter operation may
be classified as simple or complex based on the predicate
used. A simple filter’s predicate may either test the variable
directly against a constant or use the variable to perform a
field lookup and test that value against a constant.

Filtering is used to describe the independent partitions
used in an application. The contents of the subcircuit id

field may be read from an input file or they may be the re-
sult of an online graph clustering algorithm. DPL places no
constraints on the form or result of that computation — it
simply captures how index spaces are derived from it.

Line 13 shows the use of arbitrary application data to
derive a dependent partition. We want every wire to be-
long to the same subcircuit as its in node, and the ex-
pression owned nodes←in node computes the set of
edges e where in node(e) ∈ owned nodes. Put another
way, it is the preimage of owned node under the func-
tion in node. We use preimage (and image) in the stan-
dard mathematical sense: for any function f : X → Y ,
we define the image f→ : 2X → 2Y such that f→(S) =
{f(x) | x ∈ S} and the preimage f← : 2Y → 2X such
that f←(S) = {x | f(x) ∈ S}. Although it remains unin-
terpreted, the knowledge that the current value of in node
is a mathematical function allows DPL to learn constraints
on how owned nodes and owned wires may relate.

Line 14 uses another filter operation to compute the set
of wires that cross between subcircuits (cross wires),
but uses a complex filter. The predicate for a complex fil-
ter may include multiple field lookups on either side of the
(in)equality. Although these complex predicates are critical
for expressing partitions in many cases, they can be prob-
lematic for static analysis, as we discuss in Section 3.

The counterpart to line 13’s preimage operation is the im-
age operation on line 16. We again treat a field (out node
this time) as a function and compute the image of the
cross wires index space to determine the set of nodes
that are shared (i.e. accessed by another subcircuit).

The final way in which index spaces can be derived
from others is by standard set union (|), intersection (&),
and difference (-) operations. Lines 17 and 18 split the
owned nodes into the my private and my shared
subsets based on whether any other subcircuit will access
them. The ghost nodes for a given subcircuit can be deter-
mined by computing the image of just its owned wires
through the out node field and subtracting out any nodes
that are owned. There is no need to do the same for the
in node references, but we will test that assertion shortly.

The consistency requirements between different parti-
tions are expressed using the assert keyword, which can
be used to confirm the containment of one index space in
another (<=) or the disjointness of two index spaces (*). Re-
quirements are often expressed by computing additional de-
pendent partitions and comparing them instead. Lines 21 and
22 use the image operation again to compute the nodes that
can be directly reached from a wire in owned wires and
demand that they fall into that subcircuit’s private, shared,
or ghost nodes. (The omission of my ghost on line 21 al-
lows us to verify our claim above that the image through
in node was unnecessary.) This example’s assertions are
easily verified by hand, but an automated approach is obvi-
ously desirable and is discussed in Section 3.



2.1 Integer Arithmetic
The circuit example uses unstructured data, but it is equally
important to capture structured (and semi-structured) cases
in which partitions are defined in whole or in part by op-
erations on the indices themselves. An example of this is
red-black Gauss-Seidel iteration, in which the convergence
of an iterative algorithm can be improved by separating ele-
ments into two sets (red and black) and alternately updating
one based on the other. Figure 4 shows a DPL program that
implements this partitioning.

The operations performed on indices are generally pure
functions involving fairly simple arithmetic but commonly
require the ability to force computed values into an inter-
val, either by clamping the out-of-range values or by wrap-
ping them around to the other end of the interval. Adding
a whole sub-language for these index-based computations
would complicate DPL considerably. Instead, DPL treats
them very similarly to fields (i.e. as uninterpreted functions),
but allows properties to be provided that can partially (or
fully) specify the behavior of the function. The actual func-
tion is used at runtime to compute images and preimages, but
DPL’s static analysis is based entirely on the properties, and
any verification results from that analysis will hold for any
variant of the function that still satisfies the given properties.

The restrictions on what a property may describe are
similar to those of filter predicates. They may refer to the
inputs and outputs of a single function and any scalar values
or loop variables in scope. They may perform comparisons
of integer and floating-point values. They may also include
linear integer arithmetic: addition and subtraction, as well as
multiplication, division and remainder by integer constants.
Examples can be seen on lines 4, 7, 11, and 14 of Figure 4.

Once declared, a function may be used in place of a field
in any operation. A simple filter may contain a single func-
tion evaluation instead of a field lookup, but any combination
of the two results in a complex filter operation.

Once these functions and their properties are defined,
the set of elements that will be updated as part of a “red”
iteration are computed on lines 17 and 22, and in turn the
elements they will access are computed on lines 18 and 23.
Line 26 asserts that these red blocks can be operated on in
parallel and uses the ability to place conditions on when the
assertion must hold.

2.2 Limits on Expressiveness
When designing a language with static analysis in mind,
deciding what to exclude is important. We discuss a few
conscious omissions: the immutability of index spaces, the
limitation to linear integer arithmetic, and the question of
transitive reachability.

Although DPL must necessarily include loops to describe
interesting partitions and applications with iterative compu-
tations, the immutability and lexical scoping of index spaces
ensure that the fragment of a DPL program that feeds into

1 val N : int;
2 idx elems = ispace(int32, 0, N);
3 function left : int32→ int32; −− subtract 1 and clamp to 0
4 property (left(x) ≥ 0) ∧ (left(x) ≥ (x−1)) ∧ (left(x) ≤ x);
5

6 function right : int32→ int32; −− add 1 and clamp to N−1
7 property (right(x) < N) ∧ (right(x) ≤ (x+1)) ∧ (right(x) ≥ x);
8

9 val B : int;
10 function blockid : elems→ int;
11 property blockid(x) = x / (2∗B);
12

13 function isred : elems→ int;
14 property isred(x) = (((x / B) % 2) = 0);
15

16 for i in ispace(int, 0, N / (2∗B)) {
17 idx red update i = elems{ x | x→blockid = i ∧ x→isred };
18 idx red access i = red update i |
19 red update i→left | red update i→right;
20

21 for j in ispace(int, 0, N / (2∗B)) {
22 idx red update j = elems{ x | x→blockid = j ∧ x→isred };
23 idx red access j = red update j |
24 red update j→left | red update j→right;
25

26 assert (i != j) ∧ (B > 0)⇒ (red access i ∗ red update j);
27 }
28 }

Figure 4: Red-black Gauss-Seidel partitioning in DPL

a given partitioning operation or consistency check is loop-
free. Our analysis in the next section depends on this loop-
freedom. A given iteration of a loop may not refer to index
spaces computed in the previous iteration. Information may
still flow from previous iterations (e.g. for incremental repar-
titioning), but it must flow through fields.

Second, the inability to express properties of functions
that perform general integer multiplication or any kind of
arithmetic on floating-point values is again necessary for
tractable analysis. We also argue that such operations rarely
appear in partitioning-related computations. In particular,
the linear integer arithmetic contained in DPL is sufficient
to precisely describe the standard domain maps in Chapel.

Finally, image and preimage operations compute reach-
ability, but only allow a fixed number of steps that can be
statically determined. Although transitive reachability (i.e. a
fixed-point operator) is a very desirable property to describe,
static analysis of it is intractable in most cases. Worse, the
time complexity of a generic dynamic analysis used as a fall-
back is quadratic in the size of the index space. By excluding
transitive reachability from DPL, the programmer is left with
two choices:
1. Performing the fixed-point operation manually and sup-

plying the result in a field, or
2. Finding an equivalent way to express the desired con-

straint using the available partitioning operations.
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Figure 5: PENNANT mesh structure

An example of the latter situation can be found in the
PENNANT[18] application, which simulates hydrodynam-
ics in an irregular mesh and is used in our evaluation in Sec-
tion 6. A zone in a PENNANT mesh is an arbitrary polygon
which is divided into triangular sides (see Figure 5). Each
side has a pointer to the zone of which it is a part and also
to the next side. In a distributed computation, the zones are
partitioned based on their submesh id and then the cor-
responding partition of the sides is a preimage through the
mapsz (“map sides to zones”) field. This trivially satisfies
the first consistency requirement on line 15 of Figure 6.

The application also depends on being able to walk the
sides “around” a zone (line 16), which appears to necessi-
tate a fixed-point operation. In this case (and in others like
it), the key observation is that while walking all the sides
reachable from a given side requires a fixed point, determin-
ing whether two adjacent sides are not in the same zone does
not. The combination of a complex filter (line 7) to identify
malformed sides, an image to compute the corresponding
malformed zones (line 8), and then a preimage to share that
information with the other sides of the same zones (line 9)
provides the equivalent of the fixed-point operator in these
cases, but is still statically analyzable and has only linear
runtime cost.

Given these exclusions in the pursuit of static analyzabil-
ity, the reader may question the inclusion of the complex
filter operations. Complex filter operations are distinguished
from the omitted features above in three critical ways:
1. Pragmatically, their exclusion would result in DPL being

too weak to describe both the circuit and PENNANT
examples, and likely many other common patterns.

2. Several heuristics (described in Section 3.2) are available
to eliminate such expressions in many cases.

3. When the static analysis is unable to yield a result, the
corresponding dynamic analysis has both time and space
complexity that is linear in the index space sizes — no

1 idx zones = ispace(ptr);
2 idx sides = ispace(ptr);
3 field submesh id : zones→ int;
4 field mapsz : sides→ zones+;
5 field mapss3 : sides→ sides+;
6

7 idx bad sides = sides{ s | s→mapsz != s→mapss3→mapsz };
8 idx bad zones = bad sides→ mapsz;
9 idx any bad sides = bad zones← mapsz;

10

11 for i in ispace(0, N) {
12 idx my zones = zones{ z | z→submesh id = i };
13 idx my sides = (my zones← mapsz) − any bad sides;
14

15 assert my sides→mapsz ≤ my zones;
16 assert my sides→mapss3 ≤ my sides;
17 }

Figure 6: PENNANT partitioning in DPL

worse than any of the other partitioning operations. (This
is due to the restriction that even complex filter opera-
tions must be quantifier-free.)

3. Static Analysis
This section describes the static analysis used to discharge
most DPL assertions at compile time. We first describe a
sound and complete version of the analysis that can be used
in the absence of complex filter operations. We then cover
the problems caused by the introduction of complex filter
operations, and present a modified version of the algorithm
that must necessarily be incomplete, but for which an effi-
cient dynamic check can be defined to handle cases where
the static analysis fails to yield a yes/no answer.

3.1 Simple Filter Operations
At a high level, the analysis in the absence of complex filter
operations proceeds as follows:
1. Extract the loop-free subset of a DPL program that cul-

minates in the assertion(s) to be checked.
2. Translate the DPL statements into a formula in a frag-

ment of first-order logic that may contain quantifiers,
linear arithmetic, and uninterpreted functions, but is re-
stricted enough to remain decidable.

3. Translate the formula into an equisatisfiable one that is
quantifier-free.

4. Use a decision procedure for the theory of Presburger
arithmetic and uninterpreted functions to decide the sat-
isfiability of this final formula.
The first two steps are straightforward. The immutability

and lexical scoping of index spaces allows a syntax-directed
translation of the DPL program to generate the necessary
formulas in linear time. The translation maintains the fol-
lowing state:



DPL F (field mapping) Logic
idx A = ispace(int32); {} PA(x) ≡ int32(x)
field f : A→A; {}
function g : int32→int32; {g → α}
property g(x) = x + 1; {g → α} Pg(x, y) ≡ y = x+ 1

immutable f { {g → α, f → β}
idx Y = A→f; {g → α, f → β} PY (x) ≡ ∃y, x = β(y) ∧ PA(y)
idx W = A - Y; {g → α, f → β} PW (x) ≡ PA(x) ∧ ¬PY (x)
idx Z = W←g; {g → α, f → β} PZ(x) ≡ ∃y, α(x) = y ∧ Pg(x, y) ∧ PW (y)

assert Y ∗ Z; {g → α, f → β} SAT[ PY (x) ∧ PZ(x) ]
} {g → α}

Figure 7: Example of syntax-directed translation of DPL into logic

• The names of index spaces in scope, with unary predi-
cates PI(x) that capture membership in each index space.
The forms this predicate can take are described below.
• The for loop variables in scope, with any known bounds.
• The mapping F of DPL functions and currently im-

mutable fields to function symbols. A field is assigned a
fresh function symbol at the beginning of an immutable
block. The assignment is removed from F at the end of
that block. (When a field that does not appear in the im-
mutable set is used in a DPL operation, it is given a fresh
function symbol for each occurrence.)
• The properties associated with each DPL function. These

take the form of binary predicates Pf (x, f(x)). For con-
venience, a field (or a function with no properties) has a
predicate that is simply > (true).
When a line of the program contains index space expres-

sions, they are parsed and a fresh predicate is created for
each subexpression. A new index space created using the
ispace keyword places constraints based on the base type
and any supplied bounds:

C = ispace(T ) =⇒ PC(x) ≡ PT (x)

C = ispace(T, v1, v2) =⇒ PC(x) ≡ PT (x) ∧
x ≥ v1 ∧ x ≤ v2

Set operations result in standard logical connectives:

C = A & B; =⇒ PC(x) ≡ PA(x) ∧ PB(x)

C = A | B; =⇒ PC(x) ≡ PA(x) ∨ PB(x)

C = A−B; =⇒ PC(x) ≡ PA(x) ∧ ¬PB(x)

Image and preimage operations yield existential quantifiers:

C = A→ f =⇒ PC(x) ≡ ∃y, x = F[f ](y) ∧
Pf (y, x) ∧ PA(y)

C = A← f =⇒ PC(x) ≡ ∃y,F[f ](x) = y ∧
Pf (x, y) ∧ PA(y)

Finally, the translation of a simple filter depends on whether
the index is used directly or if a field lookup is performed

(in which case it is very similar to a preimage):

C = A{x | φ(x)} =⇒ PC(x) ≡ PA(x) ∧ φ(x)

C = A{x | φ(x, f(x))} =⇒ PC(x) ≡ PA(x) ∧
∃y, (F[f ](x) = y ∧

Pf (x, y) ∧ φ(x, y))

Whereas index space expressions generate unary predi-
cates, DPL assert statements use those predicates to yield
statements whose validity can be tested. As is standard,
these statements are negated, yielding an existential state-
ment suitable for a satisfiability query:

assert A ≤ B =⇒ ∃x, PA(x) ∧ ¬PB(x)

assert A ∗B =⇒ ∃x, PA(x) ∧ PB(x)

Figure 7 gives an example DPL program and its transla-
tion into logic. The logic used is a carefully-chosen fragment
of first order logic, and one whose decidability has, to our
knowledge, not been previously studied. General first order
logic allows arbitrary variables, quantifiers, function sym-
bols, and predicates. A fragment disallowing function sym-
bols and limiting the number of free variables to two (i.e.
FO2) is decidable [29], but too restrictive - DPL requires ar-
bitrary function symbols to reason about images and preim-
ages. Allowing a third free variable (i.e. FO3) results in un-
decidability [6], as does nested use of function symbols [20].
Intuitively, function composition can be used to create new
variables:

f(g(x)) = y ⇐⇒ g(x) = z ∧ f(z) = y

DPL also requires the use of linear integer arithmetic
(i.e. Presburger arithmetic), which is decidable with arbi-
trary quantifiers via Cooper’s procedure [12], but undecid-
able with the addition of a single unary predicate [17]. The
immutability of index spaces in DPL allows the elimination
of predicates, avoiding this concern. Similarly, use of arbi-
trary function symbols and quantifiers with Presburger arith-
metic results in undecidability, but these analyses were per-
formed with no restrictions on the number of variables. We



function DPLSAT(φ)
ρ := >
while ¬quantifier-free(φ)

select top-level quantifier ∃y, ψ(x̄, y) in φ
if coinflip() = true
φ := φ[∃y, ψ(x̄, y)/>] ∧ ψ(x̄, y′)

else
φ := φ[∃y, ψ(x̄, y)/⊥]
ρ := ρ ∧ ¬ψ(x̄, q) -- q does not appear in ψ

if ρ ≡ >
return PAUFSAT(φ)

else
for v in free-vars(φ)
φ := φ ∧ ρ(x̄, v)

return DPLSAT(φ)

Figure 8: DPLSAT Pseudocode

were unable to find any studies of Presburger arithmetic with
limitations on the number of free variables and use of func-
tions, perhaps due to doubts about the utility of that frag-
ment. However, DPL inhabits this space (as a result of the
limitations adopted in Section 2.2), and we show below that
these restrictions do indeed result in a decidable fragment of
first order logic.

The first step of the analysis of a DPL problem is to
expand all of the predicates. The DPL assertion is valid if the
resulting formula is unsatisfiable. For the example in Figure
7, expanding the assert on the last line yields:
SAT[ (∃y, x = β(y)) ∧ (∃z, α(x) = z ∧ z = x+ 1 ∧

¬(∃w, z = β(w))) ]

The base type predicates int32( · ) have been eliminated and
all variables have been given unique names for clarity, but
the predicate expansion has duplicated the subformula for
PY . This is necessary for our decision procedure below, but
we note that it can result in a formula that is exponential in
the size of the original program in the worst case.

The final two steps of our strategy are combined in the
form of a DPLSAT procedure that decides the satisfiabil-
ity of our statements, using a known decision procedure for
the theory of quantifier-free Presburger arithmetic and un-
interpreted functions (PAUFSAT) as a subroutine[30]. Fig-
ure 8 gives pseudocode for a non-deterministic form of the
DPLSAT algorithm, and we describe the intuition here.

The DPLSAT algorithm uses case analysis to eliminate
quantifiers, exploring the subset of possible models in which
a given quantified expression holds and those for which it
does not hold. This is captured by the following transforma-
tion, which is generally applicable. A top-level existential
quantifier (i.e. one not contained in another quantifier) is re-
moved from the main formula and either added as a condi-
tion on a new free variable in the “assumed true” case or in

its negated form (i.e. a universally quantified axiom) in the
“assumed false” case:
φ(x̄,∃y, ψ(x̄, y))⇐⇒SAT (ψ(x̄,>) ∧ ψ(y+)) ∨

(∀y−,¬ψ(x̄, y−)) ∧ (φ(x̄,⊥))

Each case is further subdivided until φ becomes quantifier-
free. If more than one quantifier was “assumed false”, their
bodies are conjoined, resulting in a statement of the form:

(∀q, ρ(x̄, ȳ, q)) ∧ φQF (x̄, ȳ)

The universal quantifier can now be instantiated for all free
variables in φQF . This preserves equisatisfiability because
the statements generated for DPL assertions fit within a
very restricted fragment of first-order logic, allowing the
elimination of the universally quantified axiom from the
statement once it has been instantiated for all free variables
that exist at the time.

The body of every existential quantifier in any formula
generated by DPL is in FO2 (i.e. first-order logic with at
most 2 free variables in any subformula), which means that
the body of a nested quantifier can only refer to the most im-
mediately enclosing quantified variable. Further, each body
contains exactly one term that uses a function, and it is al-
ways of the form f(x) = y, i.e. a functional dependence
between the quantified variable and the enclosing one. As
a result, when these bodies are negated, the resulting ρ in-
cludes a disjunction of disequalities. In the instantiation of
ρ for one of the free variables in φQF , these disequalities
may be incompatible with functional dependences already
present in φQF , making the rest of ρ relevant for satisfiabil-
ity. However, any new quantifier created through this instan-
tiation will create a new free variable that has a functional
dependence with exactly one existing variable. The instanti-
ation of the universal quantifier for this new variable always
results in a disequality that can be trivially satisfied.

With this constraint, the DPLSAT algorithm is guaran-
teed to terminate and we have the following bounds on its
complexity.

Theorem 1. DPLSAT runs in NEXPTIME (and requires
EXPSPACE).

Briefly, each recursive call to DPLSAT may quadratically
increase the number of quantifiers in φ in the worst case, but
it reduces the maximum nesting depth of these quantifiers by
at least one level. The loop in each call to DPLSAT is lin-
ear in the number of quantifiers occurring in φ. In practice,
these worst-case bounds can be dramatically improved by
performing simplifications on φ and ρ within the loop, prun-
ing that part of the search if either becomes unsatisfiable.

Returning to our example, we have 3 quantifiers, and a
maximum nesting level of 2. There are 6 ways in which the
nondeterminstic choices in the quantifier-elimination loop
can complete (if z is assumed unsatisfiable, w disappears
from φ as well). Only one results in a new φ that isn’t triv-



ially unsatisfiable - the case in which y and z are hypothe-
sized to be satisfiable, but w is not. This case yields:
φ ≡ f(y+) = x ∧ g(z+) = x ∧ z+ = x+ 1

ρ ≡ f(q) 6= z+

The simplification of φ is not able to eliminate any variables,
so ρ is instantiated 3 times, with q being replaced by each of
the free variables x, y+ and z+ in turn:
f(y+) = x ∧ g(z+) = x ∧ z+ = x+ 1 ∧

f(x) 6= z+ ∧ f(y+) 6= z+ ∧ f(z+) 6= z+

This formula is easily satisfied (e.g. x = 0, y+ = 0, z+ =
1, f( · ) = 2), yielding a model for the original formula.
Thus we have shown the assertion in the DPL code in Fig-
ure 7 to be incorrect under some possible execution of the
program. Had the code made g an identity function instead of
a successor function, the instantiated formula would contain
a contradiction (i.e. f(y+) = x ∧ z+ = x ∧ f(y+) 6= z+),
rendering it unsatisfiable and the original assertion would be
discharged.

This divide-and-conquer approach to the problem is simi-
lar to the techniques used in SMT solvers such as Z3[14] and
CVC4[4]. The main difference is while SMT solvers rely on
heuristics to guess which cases to try, we are able to precisely
enumerate the cases that matter. Interestingly, our bounds on
the complexity of DPLSAT suggest that a heuristic approach
in which universal quantifiers are only instantiated on de-
mand will also have a bounded execution time. Anecdotally,
this appears to be the case - the Z3 SMT solver took under
a second to prove the validity of each assertion in our test
cases.

3.2 Complex Filter Operations
Our algorithm above relies on efficient queries for quantifier-
free formulas, which are available only in the absence of
complex filter operations. In complex filter operations, the
composition of multiple functions, or a function with arith-
metic, effectively creates additional free variables, extending
the formula to FO3 and beyond, fragments that are known to
be undecidable[6].

As discussed in Section 2.2, complex filter operations are
necessary to express many common application use cases,
so we extend our analysis to attempt to discharge these
assertions either entirely at compile time or with a dynamic
test that is more efficient than an explicit test of the assertion
condition. We use three heuristics.

For the first heuristic, we observe that any complex filter
can be replaced by a simple filter using a fresh boolean func-
tion and the resulting formula is weaker than the original.
Therefore, we can start by replacing all complex filter opera-
tions in this manner and test for satisfiability. If the modified
formula proves to be unsatisfiable, the original formula must
be as well and we have validated the assertion. If a satisfy-
ing assignment is found, we test it against the complex filter
predicates that were removed. If it is compatible with these

predicates, we have a true positive and the original assertion
is invalid. However, if at least one of the complex predicates
is not satisfied, the assignment represents a false positive and
we continue with the next heuristic.

The second heuristic also attempts to avoid runtime
checks entirely, and takes the pragmatic approach of adding
back in the problematic predicate(s) and hoping that a mod-
ern SMT solver can handle it. As termination is no longer
guaranteed, a timeout must be set on the query, but this
works well in practice. Z3, with its inbuilt heuristics, found
all of our complex filter test cases to be unsatisfiable in just
a few seconds.

The final heuristic attempts to simplify the runtime check
rather than eliminating it entirely, and targets the case where
these complex filter operations are used to “sanitize” input
data. An example of this was seen with PENNANT in Sec-
tion 2.2. While this filtering is critical for the correctness of
the program, it is expected that application mesh data struc-
tures will be well-formed in practice. This heuristic tries re-
placing a complex filter with trivial predicates that either in-
clude all or none of the elements of the input index space
and retesting the assertion. If either is successful, an addi-
tional runtime check is added that tests this intermediate re-
sult for equality or emptiness (depending on which predicate
succeeded). These runtime checks are trivial, and if they suc-
ceed, the more expensive check can be skipped.

4. Dependent Partitioning in Regent
Our dependent partitioning framework is intended to be ap-
plicable to a variety of programming models. In this section,
we discuss an implementation in Regent[31], a language de-
signed to target the Legion runtime. The Regent data model
and type system make it easy to embed DPL partitioning op-
erations, and the compiler can usually insert the necessary
consistency checks automatically.

Data in a Regent program is stored in regions, each of
which has one or more fields. Regent includes a first-class
object called a partition which is equivalent to an array
of subregions. The dependent partitioning operations in our
framework must be extended to work on these arrays.

Partitions are created in Regent by supplying a region to
the partition operation along with a coloring object. A
coloring is an abstract data type that allows the application to
describe any association of colors (generally small integers)
to elements of a region. The operation creates an array of
subregions where each subregion contains all the elements
of the parent region of a particular color.

A coloring may assign any number of colors (or none)
to each element in a region and must allow random access,
as colorings are often computed by following the topol-
ogy of the application’s data structures. Regent uses Le-
gion’s standard map-of-sets-of-indices representation. Ide-
ally, other representations would be available that optimize
for various common sparsity patterns, but this would com-



1 var p nodes eq = block split(all nodes, N)
2 var p wires eq = block split(all wires, W)
3

4 for i in 0, N do load circuit(p nodes eq[i], p wires eq[i]) end
5

6 var p nodes = partition(all nodes, subckt, N)
7 var p wires = preimage(all wires, p nodes, in node)
8 var p extern = difference(image(p nodes, p wires, out node),
9 p nodes)

10 var all shared = union(p extern)
11 var all private = difference(all nodes, all shared)
12 var p pvt = intersection(p nodes, all private)
13 var p shr = intersection(p nodes, all shared)
14 var p ghost = intersection(p extern, all shared)
15

16 fspace Subcircuit(rn : region(Node),
17 rw : region(Wire(rn, rn, rn))) {
18 rp : region(Node),
19 rs : region(Node),
20 rg : region(Node),
21 wp : region(Wire(rp, rs, rg)),
22 ...
23 } where rp ∗ rs ∗ rg, rp <= rn, rs <= rn, rg <= rn, wp <= rw
24

25 for i = 0, N do
26 subckt = Subcircuit(all nodes, all wires) {
27 rp = p pvt[i],
28 rs = p shr[i],
29 rg = p ghost[i],
30 wp = p wires[i],
31 ...
32 }
33 end

Figure 9: Regent circuit simulation with new partitioning
operations

plicate the interface significantly. Our dependent partition-
ing framework lets us eliminate the coloring object entirely,
instead using a field to represent the coloring. The result is
the deletion of Regent’s existing partition operation and
coloring-related interfaces, and the following new dependent
partitioning operations:

partition(parent region, field, N )
image(parent region, source partition, field)
preimage(parent region, target partition, field)
union(region or partition, . . .)
intersection(region or partition, . . .)
difference(region or partition, region or partition)
block split(parent region, N )

The new partition operation takes a parent region, a
field, and the number of subregions to create. For each i in
[0, N), a simple filter defines the subregion:

subregioni = parent{x | x→ field = i}

The image and preimage operations accept an exist-
ing partition (i.e. an array of subregions) and map an image

(or preimage) over the elements, returning a new array of
image (or preimage) subregions:

imagei = parent & (sourcei → field)

Regent’s type system requires the inclusion of an additional
intersection with the parent region of the desired out-
put partition. This can be efficiently fused with the im-
age/preimage computation in the runtime.

The set operations accept either regions or partitions as
arguments. If any of the arguments are partitions, the set op-
eration is mapped over the elements of the arrays, yielding a
new partition. The union and intersection operations
may also be called with a single partition as an argument,
in which case the elements of that partition are reduced to
a single region that is the union (or intersection) of all the
subregions of the original partition.

Finally, the block split operation allows a region
to be partitioned into N (roughly) equal subregions using
arithmetic on the indices themselves. This operation can be
performed before storage is allocated for the region’s fields.

Figure 9 shows the new partitioning code for the circuit
simulation in Regent. When a Regent program is modified
to use these new dependent partitioning operations, there are
four benefits that are realized:
1. The number of partitioning operations remains roughly

the same, but change from a sequence of nondescript
partition calls to a self-documenting description of
the partitioning computation.

2. All the code related to creating and populating the color-
ing objects can be deleted.

3. Significant improvements in partitioning time, due to the
runtime’s ability to choose optimized data structures (dis-
cussed in the next section) and (in nearly all cases) the
elimination of dynamic consistency checks.

4. The program’s input file loading or generation code can
be distributed as well, allowing the application to work on
data structures that are too large to fit on a single node.
Consistency checks are generated by Regent when point-

ers or regions are “downcast” to a more restrictive type. An
example of this is in lines 26-32 of Figure 9. To discharge
these checks during compilation, the Regent compiler must
perform the static analysis described in Section 3. Rather
than implementing the analysis a second time, the Regent
compiler translates the relevant parts of the program into
DPL and performs the analysis on the DPL version.

Regent allows a programmer to assert that they expect it-
erations of a loop to be able to run in parallel. This requires
static analysis to verify there are no loop-carried depen-
dencies, which often demands that the regions accessed in
each iteration are non-overlapping. The current Regent com-
piler can perform the needed analysis only in simple cases.
With the use of the dependent partitioning framework, many
cases that could not be checked before (such as the red-black
Gauss-Seidel example in Section 2) are handled.



5. Dependent Partitioning in Legion
The output of the Regent compiler is C++ code that uses
the Legion runtime API. Applications can also be written
directly for the Legion runtime API (although without the
benefits of the Regent compiler’s type checking and static
analysis), therefore it is important that the new dependent
partitioning operations are supported by the Legion runtime.
The Legion API was augmented to include new entry points
for each of the operations added to Regent.

Although the effort involved in achieving an efficient and
scalable implementation required solving many issues, we
focus on two. First, we discuss the internal representation of
an index space in Legion, and second, we cover a key opti-
mization that improves the scalability of image and preimage
operations.

5.1 Index Space Data Structure
Since index spaces are the key data type used in partitioning
operations, it is important that they be efficient in both mem-
ory usage and query complexity. The construction cost for an
index space is a secondary consideration. As our framework
allows index spaces to be computed from arbitrary data, we
must use a data structure that can describe any set of N in-
dices, which will necessarily require O(N) storage cost and
O(logN) query time. However, we also provide a mecha-
nism for compressing commonly occurring patterns to im-
prove memory usage and query time.

The index space data structure contains a bounds inter-
val that gives an upper bound on elements of the index space,
a dense flag that indicates if every index in the bounds
interval is included, and a cluster list stores the inter-
vals containing elements when the dense flag is disabled.
Each list entry includes an optional bitmask to capture non-
dense clusters of indices. The intervals are sorted to maintain
a logarithmic worst-case complexity for queries.

The Legion runtime operates in a distributed memory en-
vironment, and index spaces often need to be copied between
nodes to perform partitioning operations. In some cases, im-
precision in the index space membership is acceptable if it
reduces the network traffic. Upon request, a precise index
space is turned into an approximate index space that has a
configurable maximum size by first omitting all of the bit-
masks for non-dense clusters and then iteratively merging
pairs of clusters into single intervals that cover both. This
algorithm guarantees that an approximate index space is an
upper bound for the original index space — i.e. every in-
dex present in the original index space is also present in the
approximation. Approximate index spaces are a crucial com-
ponent of the implementation of several dependent partition-
ing operations that we discuss below.

5.2 Scalability of Image and Preimage Operations
The Legion runtime allows data for a field to be distributed
across multiple region instances, and the implementation of

dependent partitioning operations that use field data. The
internal interface for computing images is shown here:

1 Event compute images(IndexSpace parent,
2 const vector<IndexSpace>& sources,
3 const vector<RegionInstance>& instances,
4 const vector<IndexSpace>& instance domains,
5 vector<IndexSpace>& images,
6 Event wait for);

The parent parameter is the index space for the Re-
gent parent region, while sources contains the index
spaces for each region in the Regent source partition.
The index spaces that Legion will use to construct the out-
put partition are filled into the images vector - this will
have the same length as the sources input vector. The
wait for precondition and output events allow the Legion
runtime to describe the necessary scheduling dependencies
for this operation. Finally, the instances vector provides
the list of instances containing the field data. Each instance
can be thought of as a partial function fj , with the corre-
sponding instance domain element giving the subdo-
main Dj over which each partial function is defined. Using
these partial functions, we can write the image operation as
a union of the image of each partial function (using P for the
parent index space, Si for a given source index space and Ii
for the corresponding image output:

Ii =
⋃
j

P ∩ f→j (Si)

Note that every Si interacts with every fj in this opera-
tion. Although the sizes of the sources and instances
vectors need not match, they will often both be O(N) in
practice (where N is the number of ranks or cores in the ma-
chine). In the worst case (e.g. a completely random graph),
this requiresO(N2) work. However, in most common cases,
there will be at least some structure to the data and f→j (Si)

will be a nonempty set for at most M � N2 pairs. By us-
ing an output-sensitive algorithm, we can greatly improve
the performance of these common cases. We first rewrite the
above formula to make the known domain of each partial
function explicit and then take advantage of the fact that the
image of an empty set is an empty set:

Ii =
⋃

j, Dj∩Si 6=∅

P ∩ f→j (Dj ∩ Si)

We have reduced the work to require only O(M) image
calculations, but we still have O(N2) intersection tests to
perform. However, if we can perform these tests in a central-
ized location, we can use an interval tree to reduce the cost to
O(NlogN+M). Copying all the Si andDj to a single node
can be prohibitive if the index spaces are sparse, so the final
improvement is to construct the interval tree and perform the
intersection tests using the approximate index spaces S̃i and
D̃j . This approximation is sound as the intersection of two
upper bounds can be empty only if the actual sets are empty.



Dependent
Original Partitioning

Application LOC LOC Reduction
PENNANT 163 6 96%
Circuit 159 8 95%
MiniAero 51 7 86%

Figure 10: Reduction in code required to compute partitions

The precise intersection is still needed within the image, but
is only performed O(M) times, and the complexity for the
whole operation is O(NlogN +M) as well.

A similar optimization is used for preimages, with the
complication that we cannot directly intersect the instance
domains Dj with the targets Ti in:

Ii =
⋃
j

P ∩ f←j (Ti)

Instead, we compute Rj = f→(P ) and use the identity:
A ∩ f←(B) = A ∩ f←(f→(A) ∩B)

to yield:

Ii =
⋃
j

P ∩ f←j (Rj ∩ Ti)

and again perform approximate intersection tests. Noting
that the intermediate Rj’s will be discarded after this opera-
tion, we can save more time and memory by only computing
an approximate image R̃j = f̃→j (P ) in which bitmasks are
never generated and intervals are merged during the compu-
tation. Our final form again requires O(NlogN +M) work
to compute N preimages:

Ii =
⋃

j, R̃j∩T̃i 6=∅

P ∩ f←j (R̃j ∩ Ti)

6. Evaluation
In addition to the qualitative benefits of catching many
partitioning-related problems at compile time, our depen-
dent partitioning framework provides quantitative improve-
ments to both programmer productivity and application per-
formance. To assess these benefits, we look at three appli-
cations that have been written and tuned for Regent. Two
of these applications are the circuit simulation and PEN-
NANT, which were discussed briefly in Sections 1 and 2.
The third application is MiniAero, part of the Mantevo[2]
project, which performs simulation of fluid dynamics in an
unstructured 3-D mesh. Although all three applications per-
form computations on an unstructured graph or mesh, there
are differences in how “unstructured” they are. Both PEN-
NANT and MiniAero use a spatial decomposition to derive
their independent partition, resulting in a nearest-neighbor
communication pattern between the partitions. In contrast,
the circuit example uses a randomized graph that has an
all-pairs communication pattern between the partitions.
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Figure 11: Partitioning time improvement on a single node

We rewrote the partitioning code of each application to
use the new dependent partitioning operations in Regent that
we described in Section 4. The effort took only minutes, and
involved deleting nearly all of the code that was generating
colorings for the old partition operation, and instead us-
ing images, preimages and set operations to achieve the same
effect. This time also includes the time that was necessary to
run the static analysis described in Section 3 and find two
bugs in the newly written code, including the need to “filter”
the PENNANT mesh as described in Section 2.2. Since there
were no changes to the actual partitions being computed, no
other code was changed in any of the applications. Figure 10
summarizes the dramatic improvements in the number of
partitioning-related lines of code for each application. These
results do not include the application-specific code that com-
putes the assignments for the independent partition, as our
framework allows that code to be used as is.

The next benefit that can be seen is in the performance
improvements in the partitioning computation when run on
a single compute node. Figure 11 shows these benefits for
each of the applications. These three applications perform
partitioning during initialization and then simulate for any-
thing from seconds to hours, depending on the user’s needs.
To eliminate that variability, we report partitioning speedups
considering only the time required for computing the parti-
tioning and the subsequent verification in the original Re-
gent code. Overall application speedup will vary between
this upper bound and negligible, depending on the length of
the simulation. (None of these perform any re-partitioning
(e.g. for load balancing) during the computation, due in part
to the cost of such repartitioning with existing programming
models. It is our hope that the performance and productivity
improvements of dependent partitioning make this a much
more attractive option in the future.)

Each application was run with three input sizes, each
roughly 10x larger than the next. For each case, the blue
bar on the left shows the time taken by the old partitioning
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Figure 12: Strong scaling of partitioning work up to 64 nodes.
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Figure 13: Impact of intersection optimization.

method in Regent, and it is split into the time spent in the ap-
plication to compute the coloring (the darker blue) versus the
time spent in the runtime to convert the coloring into its in-
ternal representation (the lighter, but still solid, blue). Across
all three applications, the majority of the partitioning-related
effort falls to the application.

The middle grey bar in each case shows the time required
to perform the equivalent dependent partitioning operations
on a single thread. PENNANT partitioning times are im-
proved by 76-100%, Circuit by 62-103%. MiniAero benefits
the most from a data structure that efficiently stores clusters
of indices, improving by 11.2-12.7X. The orange bar on the
right in each case shows the further improvement in parti-
tioning time when 4 runtime threads are used to perform the
dependent partitioning operations. PENNANT sees an ad-
ditional 45-74% improvement, Circuit gets 60-139% better.
MiniAero improves by 30-35%, resulting in an overall 15.1-
16.6X speedup compared to the original partitioning.

The hashed bars stacked on top of each case show the
additional runtime cost of verifying the consistency of the
computed partitions. This cost is comparable to the cost of
the partitioning itself, and in current Regent programs, the
user is tempted to disable the checks. With dependent parti-
tioning, these consistency checks can be described in terms
of the same set of dependent partitioning operations, and if
they must be run, they see similar performance benefits. For

all three of these applications, the static analysis described in
Section 3 validated the assertions using Z3, and the runtime
cost is only shown for comparison purposes.

At least as important as the speedups achieved by our
dependent partitioning framework are the improvements to
scalability, which significantly improve Regent’s ability to
partition large problem sizes. For these experiments, the
number of pieces into which the data was partitioned was
held constant to keep the amount of work stable as the node
count is increased from a single node up to 64 nodes. Our ex-
periments were performed on a large Infiniband cluster with
each node containing two six-core Intel Westmere CPUs and
32GB of system memory. Figure 12 shows the results of our
experiments. The PENNANT and MiniAero applications en-
joy excellent strong scaling behavior, with PENNANT ob-
taining up to a 29x improvement on 64 nodes. In contrast,
the circuit example receives some initial benefit from going
up to 12 or 16 nodes, but beyond that, the communication re-
quired to compute a partitioning that involves all-pairs com-
munication becomes the bottleneck.

Our final experiment explores the benefit of the intersec-
tion optimization discussed in Section 5. For each applica-
tion, a single problem size was selected and scaling exper-
iments were performed, first with the optimization enabled,
and then again with the optimization disabled. For this case,
the number of partitions into which the data is being di-



vided is chosen to be 8 times the node count, anticipating
the need to expose some parallelism within a node as well
as between the nodes. The total cost of partitioning there-
fore increases with increasing node count. Despite this, the
results (Figure 13) show the nearest-neighbor structure of
the PENNANT and MiniAero meshes allows improvements
in the time taken to compute a partitioning of their data, as
long as the intersection optimization is enabled. Without the
optimization, not only does the total work increase for all
node counts, it now grows quadratically for all cases, caus-
ing erratic but generally increasing partitioning times for all
applications as the node count increases.

7. Related Work
Most partitioned global address space (PGAS) programming
models use data distribution techniques similar to those pro-
vided by Chapel[7, 8, 10]. A few also include the idea of
“indirect” maps based on an application-supplied array of
indices[1, 9], but do not perform analysis or include a depen-
dent partitioning-like way to derive one map from another.
A subset of the expressive capabilities of DPL’s functions on
indices exist in ZPL’s direction vectors[15].

Many algorithms exist for computing efficient parti-
tions of various data structures (e.g. graphs[11, 22] or
meshes[13]). Our framework is designed to be complemen-
tary to these, accepting their results as independent partitions
and then allowing further dependent partitions to be derived
from those results. Similarly, some existing libraries pro-
vide optimized routines for computing ghost cells in struc-
tured meshes[3] or “cones” and “supports” in unstructured
meshes[23]. These libraries do not provide any verification
capabilities when used directly, but could be used by an
implementation of DPL for the computation of images and
preimages.

Domain-specific languages may be designed exclusively
for distributed computations on a particular data structure
such as a graph[24, 28] and internalize the problem of par-
titioning the application data. Although the application pro-
grammer is no longer involved, the performance and verifi-
cation benefits of DPL may still be attractive to the imple-
menters of such a DSL.

Various programming languages include stencil analysis
that analyzes application code to extract memory access
patterns[16, 21, 25, 26]. Many of these patterns map well
to the dependent partitioning operations in our framework.

The need to compute reachability exists in non-distributed
settings such as loop optimization. The Sparse Polyhedral
Framework[32] is able to reason about the composition of
functions (i.e. images) or of function inverses (i.e. preim-
ages) that incorporate integer arithmetic. SPF does not re-
quire the ability to compose images with preimages, signifi-
cantly simplifying the decision problem.

There are strong parallels between DPL and efforts in the
database community. Index spaces have much in common

with database views and the image and preimage dependent
partitioning operations can be thought of as semi-joins in
relational algebra. Optimization of database queries on dis-
tributed data is an area of active research[27, 33], but has pri-
marily focused on the structure of the queries and assumes
worst-case scenarios for the data. Any structure in the data is
usually viewed as a cause of load imbalance and is random-
ized away by using hash functions or Bloom filters.

The decisions related to what to include or exclude from
the framework were informed by the (un)decidability of
various first-order logic fragments[6, 12, 17, 20, 29]. Our
analysis relies on a decision procedure for quantifier free
Presburger arithmetic with function symbols[30].

8. Conclusion
We have presented a language-independent framework for
dependent partitioning. Our framework improves upon the
partitioning capabilities of existing programming models
by providing maximal expressivity for defining arbitrary
independent partitions, but then provides a carefully cho-
sen set of operations for the derivation of dependent parti-
tions. These dependent partitioning operations are concise
and straightforward to use, simplifying application code for
partitioning and permitting static analysis that is able to dis-
charge most consistency checks between an application’s
partitions at compile time.

We describe an implementation of our dependent parti-
tioning framework in the Regent language and the Legion
runtime, demonstrating significant improvements in parti-
tioning performance (2.6X-12.7X on a single thread) and
scalability (29X speedup when going from 1 node to 64)
compared to the existing Regent partitioning mechanisms.
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