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Abstract

In this work the nature and stability of patterns arising from parametric square-
wave forcing of an inviscid fluid layer of infinite depth are investigated. Specif-
ically the case of vertically shaken fluids is considered. Beginning with the
non-linear PDE’s of the Zhang-Viñals Model of a fluid surface under small
perturbations, it is shown how a linear, second order ODE damped Mathieu
equation arises from a linear stability analysis. This analysis is performed for
several different square wave forcing functions. It is shown both analytically
and in the neutral stability curves that square wave forcing can be reduced to
delta function forcing in the appropriate limit. In addition to this, the effects of
larger forcing times on the neutral stability curves are examined. The effect of
fluid parameters on the neutral stability curves is also explored. Lastly, a nu-
merical solver is developed to observe the different patterns that are generated
by several configurations of square wave forcing.
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1 Introduction

Recently the idea of trying to understand pattern formation has been appearing
in many fields: in computer science machine learning looks to develop means of
having computers recognize patterns, in neuroscience researchers are looking to
understand how people recognize patterns, and in biology scientists are study-
ing how patterns form in different natural systems. Indeed it is interesting to
see the many broad applications that can be classified as understanding pattern
formation. However, despite our ability to describe and classify patterns, very
little is known about the underlying causes of patterns. In this work we hope
to contribute an understanding of the fundamental nature of patterns resulting
from systems undergoing parametric forcing.

Parametrically forced fluids were first studied by Faraday in [1] and have con-
sequently been referred to as Faraday systems ever since. In Faraday systems
the forcing of the system is not independent of the current state of the system.
Instead the system is said to undergo parametric forcing where the forcing func-
tion is coupled to the current state of the system in some way. Interestingly
different experiments have shown that there exists a rich variety of patterns that
can be generated using different forcing functions and media. In this work we
investigate the stability and types of patterns that form as a result of parametri-
cally exciting the surface of a fluid. In these experiments the system consists of
a fluid that is vertically shaken, potentially generating patterns on the surface.
Note that in this case the forcing function is used to define the acceleration of
the system and not its position.

One of the most interesting properties of Faraday waves (patterns forming in
Faraday systems) is that they often exhibit a frequency that is half of the fre-
quency of the forcing function. This type of response is referred to as a sub-
harmonic response as it represents a resonance that is at a frequency below
the forcing frequency. This result was first explained by Benjamin and Ursell
who demonstrated that an ideal fluid undergoing parametric forcing could be
described by a Mathieu equation [13]. While this provided some insight into the
causes of subharmonic forcing, there was no model for describing the patterns
that could form on the surface of a fluid until Zhang and Viñals proposed their
quasi-potential model [2]. This model describes the behavior of a weakly viscous
fluid layer without having to model the entire bulk fluid using the Navier-Stokes
equations. The Zhang-Viñal’s model captures the behavior of the fluid surface
by describing both its amplitude (usually denoted by h) and a surface velocity
potential (usually denoted by Φ) that describes how h will be updated. In this
work we employ the Zhang-Viñal’s model both to begin our analysis and in our
fluid simulation experiment.

Traditionally most experiments that looked at the patterns generated by para-
metric forcing utilized some sinusoidal or multi-frequency forcing. Two-frequency
forcing has experimentally generated many patterns including superlattice pat-
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ters [8], quasi-patterns [10], triangular patterns [11], and local structures [12].
Similarly, Topaz, Porter, and Silber investigated the theoretical causes of differ-
ent patterns arising from multi-frequency forcing [9]. It has only been recently
that non-smooth forcing functions have begun to be explored. Bechhoefer and
Johnson first explored the patterns generated by a sequence of periodic delta
functions [4]. Catllá, Porter, Silber then extended the work of Bechhoefer and
Johnson by examining the weakly non-linear effects that can occur under im-
pulse forcing functions [6]. In this particular work we begin to examine a new
class of non-smooth forcing functions: square waves.

Beginning with the derivation of the damped Mathieu equation from the Zhang-
Viñals model, we show how to solve for the neutral stability curves of different
square wave forcing functions. We also demonstrate that our result reduces
to the case of delta function forcing in the limit as the time spent forcing is
taken to zero. This shows that square wave forcing is a more general form of
delta function forcing. We then examine the impact of different fluid and forc-
ing parameters on the neutral stability curves. Lastly, we develop a numerical
solver for the partial differential equations of the Zhang-Viñals model in order
to observe the various patterns that form as a result of square wave forcing.

2 Determining the Stability of Faraday Waves

2.1 Derivation of the Mathieu Equation from the Zhang-
Viñals Model via Linearization

The Zhang-Viñals model of the Faraday problem may be derived directly from
the Navier-Stokes equations. By assuming fluid flow in the bulk is potential,
Zhang and Viñals were able to show in [2] that surface height h(x, t) and surface
velocity potential Φ(x, t) were solutions to the boundary conditions given by

(∂t − γ∇2)h− D̂Φ = N1(h,Φ), (1a)

(∂t − γ∇2)Φ− [
Γ0∇2 −G0 +G(t)

]
h = N2(h,Φ), (1b)

where the nonlinear terms in (1) are defined as

N1(h,Φ) = −∇ · (h∇Φ) +
1
2
∇2(h2D̂Φ)

− D̂(hD̂Φ) + D̂

[
hD̂(hD̂Φ) +

1
2
h2∇2Φ

]
, (2a)

N2(h,Φ) =
1
2
(D̂Φ)2 − 1

2
(∇Φ)2

− 1
2
Γ0∇ · [(∇h)(∇h)2

]− (D̂Φ)
[
h∇2Φ + D̂(hD̂Φ)

]
. (2b)
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In the above equations the operator D̂ performs the operation of multiplying
each Fourier component by its wave number, e.g. D̂eik·x = |k|eik·x, and the
dimensionless parameters are

γ ≡ 2νk2
0

ω
, Γ0 ≡ Γk3

0

ρω2
, G0 ≡ gk0

ω2
, (3)

where g is the acceleration due to gravity, ω is the forcing frequency, ν is the
kinematic viscosity, ρ is the density, and Γ is the surface tension. Since we have
assumed an inviscid fluid, the parameter k0 must satisfy the dispersion relation

gk0 +
Γk3

0

ρ
=

(ω
2

)2

. (4)

By dividing this equation by ω2 we arrive at the relation G0 + Γ0 = 1
4 .

The next step in the analysis is to demonstrate that the linearization of the
Zhang-Viñals equations reduces to the damped Mathieu equation. We begin by
linearizing the Zhang-Viñals equations by setting all the non-linear terms in (2)
to zero. This leaves us with a system of coupled partial differential equations.
We assume that this system has solutions of the form h(x, t) = pk(t)eix·k+c.c.
and Φ(x, t) = qk(t)eix·k+c.c where c.c. denotes the complex conjugate of the
preceding term. Substituting these forms into (1) we see that the eigenfunctions
pk(t) must satisfy the damped Mathieu equation

p̈k + 2γk2ṗk + [γ2k4 + Γ0k
3 + (G0 −G(t))k]pk = 0 (5)

where k = |k|. Contrary to direct forcing of a system where the forcing function
is a non-homogeneous component of the equation, e.g. ẍ + γẋ + ω2x = G(t),
the damped Mathieu equation represents parametric forcing. With parametric
forcing, both the current state of the system as well as the forcing function de-
termine the response of the system. It is this property that leads to both stable
and unstable solutions to the Mathieu equation.

For our study we have chosen to examine the effects of square wave forcing on
the Mathieu equation. By modulating different parameters of the square wave
we will be able to determine the neutral stability curves where the solutions of
the Mathieu equation transition from being stable to unstable.

2.2 Floquet Multipliers and Solution Stability

In order to determine the stability of solutions to the Mathieu equation we will
utilize Floquet theory [3]. Floquet theory deals primarily with determining the
periodicity of the solution given that the fundamental matrix for a system is
periodic.

Floquet’s theorem. Given a system ẋ =αP (t)x where P is an n × n matrix
with minimal period T and α is a constant, then the system has at least one
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non-trivial solution x = χ(t) such that

χ(t+ T ) = µχ(t) (6)

where µ is constant.

For a full proof of this theorem see [3]. The constant µ described in Floquet’s
theorem is called a Floquet multiplier. We are particularly interested in the na-
ture of these Floquet multipliers as certain values will assure that the solution
of the system is periodic.

We now assert without proof that the solutions of the system are periodic when-
ever the Floquet multipliers satisfy the following condition

µ = 1
1
m (7)

where m is a positive integer. For a complete derivation of this statement see [3].
It has been shown [14] that the transition from the flat fluid state to Faraday
waves occurs only for real valued Floquet multipliers, µ ± 1. These are the
exact conditions that [4] utilize for determining the stability of solutions to the
Mathieu equation. Armed with these tools we can now attack the problem
of determining the stability of solutions to the damped Mathieu equation for
square wave forcing.

3 Square Wave Forcing of the Mathieu Equation

3.1 Calculation

Our general forcing function, traditionally referred to as a square wave, is best
described as a sum of Heaviside equations (denoted by h(t)) represented as

G(t) = ε
∑
n

h(t− n∆t−∆t1)− h(t− n∆t− (∆t1 + ∆t2)). (8)

Here ∆t is the period of the square wave, ∆t1 is the amount of time during a
period that G(t) is zero, and ∆t2 = ∆t − ∆t1. Figure 1 gives an example a
square wave with the different time periods labeled.

We begin by following the method used by [4] to analyze the effect of periodic
delta-function forcing. It is important to notice that unlike [4] the square wave
forces us to consider two different cases: an instantaneous change in acceleration
or “jerk” from zero to ε and a jerk from ε back to zero. In between jerks we can
assume a solution of the form

xn(t) = Ane
ψ(t−tn) + c.c. (9)
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t

G(t)

e

0

= t
1+tt1 t 2

Figure 1: An example of square wave forcing including the definitions for ∆t1, ∆t2,
and ∆t.

where c.c. stands for the complex conjugate, tn = n∆t denotes the time at the
beginning of the nth period, and ψ(t) takes the forms of

ψ0(t) = −γk2 ± iΩ(k) (10a)

ψε(t) = −γk2 ±
√

Ω2(k)− kε (10b)

corresponding to when G(t) is equal to zero and when G(t) is equal to ε respec-
tively and Ω2(k) is the dispersion relation

Ω2(k) = Γ0k
3 +G0k. (11)

We know from [5] that the solution at the jerks must satisfy the following con-
ditions

xn+ 1
2
(tn+ 1

2
) = xn(tn+ 1

2
) (12a)

ẋn+ 1
2
(tn+ 1

2
) = ẋn(tn+ 1

2
) (12b)

where tn+ 1
2

= (n+ 1
2 )∆t denotes the time halfway through the nth period. By

applying these conditions at the two jerks contained in a period we obtain the
following maps from Ak,n to Ak,n+1

(
Ar
k,n+ 1

2

Ai
k,n+ 1

2

)
= e−γk

2∆t1

(
C1 −S1

αS1 αC1

)(
Ark,n
Aik,n

)
= e−γk

2∆t1M1,k

(
Ark,n
Aik,n

)
(13a)

(
Ark,n+1

Aik,n+1

)
= e−γk

2∆t2

(
C2 −S2

α−1S2 α−1C2

)(
Ar
k,n+ 1

2

Ai
k,n+ 1

2

)
= e−γk

2∆t2M2,k

(
Ar
k,n+ 1

2

Ai
k,n+ 1

2

)

(13b)
corresponding to when G(t) transitions from zero to ε (M1,k) and when G(t)
transitions from ε to zero (M2,k) respectively. In the above equations Ark,n (Aik,n)
is the real (imaginary) part of Ak,n and C1 ≡ cos(Ω(k)∆t1), S1 ≡ sin(Ω(k)∆t1),
C2 ≡ cos(

√
Ω2(k)− kε∆t2), S2 ≡ sin(

√
Ω2(k)− kε∆t2), α ≡ Ω(k)√

Ω2(k)−kε .
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By combining these two maps we then create a map (Mk = M2,kM1,k) across
one period of the square wave

(
Ark,n+1

Aik,n+1

)
= e−γk

2∆tM2,kM1,k

(
Ark,n
Aik,n

)
. (14)

The eigenvalues of Mk are the Floquet multipliers of the system and will be used
to determine the stability of the system. Since we know that (det Mk)=(det
M2,k)(det M1,k)=α−1α=1 we can define the Floquet multipliers

λ± =
1
2
Tr(Mk)±

√[
1
2
Tr(Mk)

]2

− 1. (15)

Whenever both of the Floquet multipliers are real and the magnitude of the
largest is greater than e−γk

2∆t then the system is unstable. This results in a
threshold condition of

1
2
Tr(Mk) = ±cosh(γk2∆t). (16)

In the above condition the “+” corresponds to a harmonic instability while the
“−” represents a subharmonic instability in ε(k). From this condition we can
derive an implicit equation f(∆t, k, ε) = ±cosh(γk2∆t) − 1

2Tr(Mk) = 0 which
cannot by solved explicitly for ε(k), but can be solved numerically. The curves
created by numerically solving the equation are referred to as the neutral stabil-
ity curves. The neutral stability curves lie on the boundary between stable and
unstable regions and form a sequence of tongues as can be seen in Figure 2. The
regions inside of the tongues are considered to be places where stable patterns
are capable of forming while the regions outside of the tongues do not contain
enough energy to support stable pattern formation. Outside of the tongues only
the trivial (flat) solution is stable. The nature of the neutral stability curves
provides us with fundamental information concerning the conditions necessary
for stable patterns to form and will be central to our study.

3.2 Approximating Delta Function Forcing

The next step in our analysis is to demonstrate that by changing the relative
magnitudes of ∆t1 and ∆t2 we can approximate the results obtained in [4] for
delta function forcing. We define

r =
∆t2
∆t

(17)

to be the ratio of the period that the square wave remains at ε. By gradually
decreasing the value of r until r → 0 we can achieve a square wave approxima-
tion to delta function forcing.
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We can show analytically that under the limit ∆t1 → ∆t and ∆t2 → 0, our
result is equivalent to the one obtained in [4] for delta function forcing. Since
∆t2 is being taken as the limit goes to zero, we can apply a first order Taylor
series expansion for the corresponding sine and cosine, thereby leaving us with
the following threshold condition.

±cosh(γk2∆t) = cos(Ω(k)∆t)− 1
2
sin(Ω(k)∆t)

√
Ω2(k) + kε∆t2(α+ α−1) (18)

After some algebraic manipulation we arrive at

Ω(k)∆t2 +
kε∆t2
2Ω(k)

=
cos(Ω(k)∆t)± cosh(γk2∆t)

sin(Ω(k)∆t)
(19)

Here we notice that the term ε∆t2 ≡ ε̂ which corresponds to the magnitude of
the delta function in [4] . After making this substitution we then take the limit
as ∆t2 → 0 and arrive at the same expression as [4] for the neutral stability
curves of delta function forcing.

ε̂c(∆t) =
2Ω(k)
k

(
cos(Ω(k)∆t)± cosh(γk2∆t)

sin(Ω(k)∆t)

)
(20)

By plotting the neutral stability curves for different values of r, as can be seen
in Figure 2, we notice that curves become increasingly asymmetric as r → 0.
The curves whose minima form at odd values of k are subharmonic tongues
while those on even values are harmonic tongues. Recall that subharmonic
tongues refer to locations where patterns would form with frequencies that are
odd multiples of half of the forcing frequency and that the harmonic tongues
correspond to even multiples of half of the forcing frequency. It should be noted
here that we have plotted the neutral stability curves as a function of k and not
∆t as done in [4]. In this paper we have non-dimensionalized around ∆t so that
the forcing function will always have a dimensionless period of 2π. However,
plotting versus k and versus ∆t are equivalent as shown by the following equation
involving the dispersion relation.

∆t =
2π

Ω(k)
(21)

When comparing the results above to the results obtained in [4] it is important to
recognize that the amplitude of the delta function, ε̂, is defined by our convention
to be

ε̂ ≡ ε∆t2 = εr∆t. (22)

This difference is important when comparing the amplitudes of the minimum for
each tongue. [4] indicates the values of ε to be much smaller than demonstrated
by our graphs. However, if each minimum is multiplied by r∆t then the results
provide a more accurate approximation of the results obtained in [4].
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Figure 2: Neutral stability curves for square wave forcing designed to approximate
delta function forcing. Red corresponds to subharmonic tongues and blue corresponds
to harmonic tongues. The ratio of the square waves r as defined in (17) is (a) r = 0.5,
(b) r = 0.25, and (c) r = 0.1. Example (d) is identical to example (c) except the
values of ε have been scaled to the values of ε̂ as defined in (22). The dimensionless
parameters used in these examples are γ = 0.02 and Γ0 = 0.040 (corresponding to
fluid parameters ν=0.02 cm2/s, Γ=1.87 dyn/cm, ρ=1 g/cm3, and ω/2π=34 Hz). The
fluid parameters used in this system are maintained throughout all of the following
examples.
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Another important consideration to take into account when comparing the
above results to [4] is the physical significance of the sign of G(t) as defined
in the Mathieu equation. In our definition positive forcing corresponds to mov-
ing opposite the force of gravity. In [4] positive forcing is defined to be in the
same direction as gravity since the sign preceding the g(t)x terms is positive
instead of negative.

ẍ+ 2γẋ+ ω2
0 [1 + g(t)]x = 0 (23)

This accounts for the reflection of each tongue about its asymptote in compar-
ison to [4].

3.3 Examining Instabilities with Larger r

In the previous section we showed that for small values of r the square wave
becomes a very good approximation of delta function forcing. In this section we
examine what happens to the neutral stability curves as r → 1.

Notice that in the case that the values of r increase the system will spend a
larger portion of time accelerating opposite of gravity while at the same time
spending less time maintaining a constant velocity. This implies that energy is
being added to the system at a much higher rate than the approximate delta
function forcing examined earlier.

From the plots shown in Figure 3 we can see that as the value of r is increased
the tongues begin to widen, but still maintain the minimum at around the same
value of k as they did in the approximate delta function forcing analysis. In
order to accomplish this, the tongues end up “curling” underneath each other.
In addition to this, the minimum of the tongues increases with larger r value
in a non-linear manner. In Figure 3(d) this is clearly visible as the minimum of
the second subharmonic tongue is not even visible even at values of ε around 40.
This result is an interesting one as it shows that as we increase the amount of
time the system spends accelerating, we increase the width of the instabilities,
pushing up the minima of higher order tongues, thereby indicating that lower
and lower values of ε are required to make the system unstable.

4 Alternating Square Wave Forcing

4.1 Calculation

We now modify our square wave forcing function so that it contains both positive
and negative components in alternating series. This function can be expressed
as

G(t) = ε
∑
n

h(t− n∆t−∆t1) + h(t− n∆t− (∆t1 + ∆t2 + ∆t3 + ∆t4))−

h(t− n∆t− (∆t1 + ∆t2)))− h(t− n∆t− (∆t1 + ∆t2 + ∆t3) (24)
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Figure 3: Examples of square wave forcing for larger values of r. The values for the
corresponding plots are as follows: (a)r = 0.6, (b)r = 0.75, (c)r = 0.9, (d)r = 0.99.
Notice how as the value of r increases the width of the tongues continues to increase.
The minima of the tongues also continue to grow as r is increased. Please note that
the appearance of some tongues fading out or appearing artificially wide is only an
artifact of our numerical plotter and does not reflect their existence or actual size.
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In the above equation ∆t is still the period of the square wave. ∆t2 represents
the time during one period that G(t) is equal to ε and ∆t4 represents the time
during one period that G(t) is equal to −ε. ∆t1 and ∆t3 represent the time
spent at zero between the time spent at ε and −ε.

t

G(t)

e

0
21+tt1

−e

t1+ t2
+ t3 t

Figure 4: An example of alternating square wave forcing demonstrating the definitions
of ∆t1, ∆t2, ∆t3, ∆t4, and ∆t.

Using the same method employed earlier we begin by noticing that we must
take into account four different conditions: a jerk from zero to ε, a jerk from ε
to zero, a jerk from zero to −ε, and a jerk from −ε to zero. We again assume
the solution stated in (9) in between jerks, however in addition to (10), ψ(t)
will also take the form

ψ−ε(t) = −γk2 ±
√

Ω2(k) + kε (25)

when G(t) is equal to −ε. Here Ω2(k) is the same as defined in (11). The
conditions that must be satisfied at each jerk remain the same, however we will
redefine them here for notational clarity.

xn+ 1
4
(tn+ 1

4
) = xn(tn+ 1

4
) (26a)

ẋn+ 1
4
(tn+ 1

4
) = ẋn(tn+ 1

4
) (26b)

By applying these conditions at each of the four points of discontinuity we derive
the following four maps from Ak,n to Ak,n+1

(
Ar
k,n+ 1

4

Ai
k,n+ 1

4

)
= e−γk

2∆t1

(
C1 −S1

αS1 αC1

)(
Ark,n
Aik,n

)
(27a)

(
Ar
k,n+ 1

2

Ai
k,n+ 1

2

)
= e−γk

2∆t2

(
C2 −S2

α−1S2 α−1C2

)(
Ar
k,n+ 1

4

Ai
k,n+ 1

4

)
(27b)
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(
Ar
k,n+ 3

4

Ai
k,n+ 3

4

)
= e−γk

2∆t3

(
C3 −S3

α̂S3 α̂C3

)(
Ar
k,n+ 1

2

Ai
k,n+ 1

2

)
(27c)

(
Ark,n+1

Aik,n+1

)
= e−γk

2∆t4

(
C4 −S4

α̂−1S4 α̂−1C4

)(
Ar
k,n+ 3

4

Ai
k,n+ 3

4

)
(27d)

corresponding to to when G(t) transitions from 0 → ε (M1,k), ε → 0 (M2,k),
0 → −ε (M3,k), and −ε→ 0 (M4,k) respectively. In the above equations C1, C2,
S1, S2, and α all have the same definitions as before and C3 ≡ cos(Ω(k)∆t3),
S3 ≡ sin(Ω(k)∆t3), C4 ≡ cos(

√
Ω2(k) + kε∆t4), S4 ≡ sin(

√
Ω2(k) + kε∆t4),

and α̂ = Ω(k)√
Ω2(k)+kε

.

Combining the above maps then allows us to create a map (Mk = M4,kM3,kM2,kM1,k)
over a whole period of square wave

(
Ark,n+1

Aik,n+1

)
= e−γk

2∆tM4,kM3,kM2,kM1,k

(
Ark,n
Aik,n

)
(28)

The eigenvalues of Mk again are the Floquet multipliers of the system and since
(det Mk)=(det Mk,4)(det Mk,3)(det Mk,2)(det Mk,1)=(α̂−1)(α̂)(α−1)(α)=1 the
Floquet multipliers still have the same form as (15). The same threshold con-
dition as (16) still applies and allows us to again form the implicit equation
f(∆t, k, ε) = ± cosh(γk2∆t)− 1

2Tr(Mk) = 0. Solving this equation numerically
will allow us to determine the neutral stability curves of the system.

4.2 Approximating Alternating Delta Function Forcing

Our next step in the analysis is to show that by modulating the values of ∆t2
and ∆t4 we can approximate the results obtained in [4] and [6] for alternating
delta function forcing. We define

r1 ≡ ∆t2
∆t

, r2 ≡ ∆t4
∆t

(29)

to be the ratio of time per period that G(t) spends at ε and −ε respectively. By
taking the limit as ∆t2,∆t4 → 0 we will be able to obtain an approximation to
alternating delta function forcing.

For the purposes of this calculation we will assume that ∆t1 = ∆t3 (for a more
rigorous treatment of what happens when ∆t1 6= ∆t3 see [6]). We can verify
analytically that under the limit ∆t2,∆t4 → 0 and ∆t1,∆t3 → ∆t

2 alternating
square wave forcing becomes alternating delta function forcing. We begin with
the same threshold condition described in (16). Since Mk is the product of four
matrices, the algebraic component of this problem becomes extensive. By uti-
lizing the substitutions defined earlier and the fact that C1 ≡ C3 and S1 ≡ S3
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we have

± cosh(γk2∆t) = 2C2
1C2C4 − 2αC1S1S2C4 − 2α̂2C1S1C2S4+(

αα̂+
1
αα̂

)
S2

1S2S4 +
(
α

α̂
+
α̂

α

)
C2

1S2S4 +

−2S2
1C2C4 − 2

α
C1S1S2C4 − 2

2
α̂
C1S1C2S4. (30)

Since ∆t2,∆t4 → 0 we can substitute a first order Taylor series expansion for C2,
S2, C4, and S4. By making this substitution, taking the limit for all terms not
containing ε, and simplifying terms, we arrive at the much simpler expression

1
2

(
2Ω4(k)− k2ε2

Ω2(k)

)
S2

1∆t2∆t4 = ± cosh(γk2∆t)− C2
1 + S2

1 . (31)

We then recognize that ε∆t2 ≡ −ε∆t4 ≡ ε̂. After making this substitution and
taking the limit as ∆t2,∆t4 → 0 we have the following expression

1
2
k2ε̂2

Ω2(k)
S2

1 = ± cosh(γk2∆t)− C2
1 + S2

1 . (32)

After some algebraic manipulation we arrive at the following expression which
is identical to the expression obtained in both [4] and [6] for alternating delta
function forcing.

ε̂c(∆t) =
2Ω(k)
k

√
cos(Ω(k)∆t)± cosh(γk2∆t)

1− cos(Ω(k)∆t)
(33)

We can also verify our result implicitly by plotting the neutral stability curves for
several decreasing values of r1 and r2. From figure 5 we can see that subharmonic
tongues are in general centered about odd values of k while harmonic tongues
are centered on even values of k.

Figure 5 also shows that as we decrease the values of r1 and r2 the harmonic
tongues gradually disappear. Indeed this is the same result determined in both
[4] and [6]. Interestingly enough our results are very similar to those obtained
in [6] using a Fourier series approximation to alternating delta function forcing.
Indeed in (a) we utilize r1 = 0.25 and r2 = 0.25 which is a close approximation
to the first term of the Fourier series (a sinusoid). By shrinking the values of r1
and r2 we are essentially creating the same effect as adding additional terms to
the Fourier series.

4.3 Instabilities with Larger r Values

Having demonstrated that alternating square wave forcing can be utilized to
approximate alternating delta function forcing we now turn our attention to
investigating the effects of increasing the values of r1 and r2. By increasing
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Figure 5: Square wave forcing designed to approximate alternating delta function
forcing. Red corresponds to subharmonic tongues and blue corresponds to harmonic
tongues. The ratios r1 and r2 as defined in (29) are as follows: (a) r1, r2 = 0.25, (b)
r1, r2 = 0.1, (c) r1, r2 = 0.05, (d) r1, r2 = 0.01. Observe how the harmonic tongues
continue to recede as the value of r1 and r2 are decreased. Note that the appearance
of some tongues fading out is only an artifact of our numerical plotter and does not
reflect their existence.
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these values we are causing the system to spend more time either accelerating
or decelerating. We begin by investigating what occurs when we maintain the
condition that r1 = r2 while increasing the r values. We then follow this up by
investigating what occurs when we create a significant difference between the r
values.

In this first experiment we maintain the condition that r1 = r2. By main-
taining this condition, we cause the system to be constantly undergoing periods
of acceleration followed by periods of deceleration back to zero velocity. Our
first example involves using r values of 0.4. This provides a brief respite where
the system maintains a constant velocity before undergoing the next acceler-
ation. The effect of this forcing is that the minimum of both harmonic and
subharmonic tongues gradually increases with wave number as may be seen in
Figure 6(a). We also notice that harmonic tongues appear broader in compari-
son to the subharmonic tongues, contrary to the approximate alternating delta
function forcing shown in the previous section. When we increase the r values
to 0.49 as seen in Figure 6(b) we notice the same effects exaggerated.

Another interesting scenario to investigate involves what occurs when we remove
the constraint r1 = r2. This then creates an asymmetry in the acceleration of
the system. This implies that if r1 is larger, the system will have a net acceler-
ation opposite the direction of gravity, while if r2 is larger, than the system will
have a net acceleration in the same direction as gravity. When running these
experiments we decided to utilize r values of 0.04 and 0.44 so that there are
still extended periods of time with no acceleration, but there was a significant
difference between r1 and r2. In the first case shown in Figure 6(c) we see that
r1 = 0.44 and r2 = 0.04. This has the effect of increasing the width of the
subharmonic tongues and shrinking the width of the harmonic tongues. It also
decreases the growth rate of the minimum of each tongue. However, when we
flip the r values some truly interesting behavior occurs as seen in Figure 6(d).
In this circumstance we notice that the tongues have begun “pinching off” to
form “islands.” In the sixth harmonic tongue this is particularly noticeable
as the tongue is right at the onset of pinching. We also notice that minimum
of the tongues increases extremely rapidly indicating that the system requires
extremely large values of ε to excite modes with even moderate k values.

5 Inverted Square Wave Forcing

From the results of the previous section, we noticed that very interesting in-
stability patterns were arising when additional emphasis was placed on the −ε
component of the alternating square wave forcing. Based on this observation,
we expected that similar behavior should also manifest itself in the case where
we only had a −ε component to the forcing. We used the same definition of
square wave forcing as was presented in section 3, but instead inverted the forc-
ing about the x-axis.
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Figure 6: Square wave values corresponding to larger values of r1 and r2. Red lines
indicate subharmonic instabilities while blue lines correspond to harmonic instabilities.
In the above examples the values of r1 and r2 as defined in (29) are as follows: (a)
r1, r2 = 0.4, (b) r1, r2 = 0.49, (c) r1 = 0.44, r2 = 0.04, (d) r1 = 0.04 r2 = 0.44.
Observe the creation of islands of instability when r1 < r2. Although the axis on
the different plots different, increasing the axis range of (a)-(c) would not reveal any
islands. Note that the appearance of some tongues fading out is only an artifact of
our numerical plotter and does not reflect their existence.
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In terms of the actual calculation itself, all of the equations are identical to
those derived in section 3, except for (10b), which now has the form

ψε(t) = −γk2 ±
√

Ω2(k) + kε (34)

The same threshold condition that is described by (16) still applies and only the
value of the Tr(Mk) will be modified. The same approximation to delta-function
forcing derived in section 3.2 still holds as well.

We began our numerical analysis by again showing that we could approximate
delta function forcing using small values of r. This can be seen in Figure 7(d)
as the neutral stability curves are identical to those seen with delta function
forcing. We also investigated slightly larger values of r up to r = 0.5. In the
process of doing this we noticed that islands began forming even at values as
small as r = 0.25 as can be seen in Figure 7(b). This was very interesting as
it indicated that very large values of r are not necessary to induce islands of
instability.

After observing the impact of r values that were less than 0.5 we also wanted
to examine the impact of r values that were greater than 0.5. We noticed that
the increasing value of r had three effects that were different from the smaller
values of r:

• There were no longer any islands for r ≥ 0.6 !

• As the value of r increases the tongues begin to compress in the sense that
we are able to see more modes coming into play for smaller values of ε.

• As the value of r increases the value of the minimum of a tongue increases
for fixed k.

This result is particularly interesting as it indicates that additional acceleration,
with decreased time to stabilize can actually result in fewer regions where pat-
terns are likely to be excited. To understand this effect a more comprehensive
analysis is necessary and will be discussed in the section on future work.

6 Impact of Fluid Parameters on Neutral Sta-
bility Curves

Having observed the existence of islands in the neutral stability curves, we
wanted to better establish the conditions necessary for their presence. We have
already discovered that islands form whenever inverted square wave forcing is
the major component of the forcing function and the r value associated with
the inverted square wave forcing component is within a certain threshold region.
In this section we investigate the impact that varying the fluid parameters has
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Figure 7: Neutral stability curves for square wave forcing designed to approximate
delta function forcing with an inverted square wave. Red corresponds to subharmonic
tongues and blue corresponds to harmonic tongues. The ratio of the square waves r
as defined in (17) is (a) r = 0.5, (b) r = 0.25, (c) r = 0.1, and (d) r = 0.01. Note that
the appearance of some tongues fading out is only an artifact of our numerical plotter
and does not reflect their existence.
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Figure 8: Neutral stability curves for square wave forcing with an inverted square wave
and large values of r. Red corresponds to subharmonic tongues and blue corresponds
to harmonic tongues. The ratio of the square waves r as defined in (17) is (a) r = 0.6,
(b) r = 0.75, (c) r = 0.9, and (d) r = 0.95. Observe how the tongues continue to “pull
up” rapidly, but do not form islands with larger values of r. Note that the appearance
of some tongues fading out is only an artifact of our numerical plotter and does not
reflect their existence.
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on the formation of islands. We make use of the dispersion relation specified in
(4) in order to vary the parameters. We used the inverted square wave forcing
described in the previous section and varied the dimensionless fluid parameters
such that one was emphasized more than the others.

6.1 Impact of G0 and Γ0

The first two fluid parameters that we investigate are G0 and Γ0. We investigate
these parameters together as they are directly related by the dispersion relation:

G0 + Γ0 =
1
4
. (35)

Although both of these parameters are dimensionless, we can associate with
them certain physical properties of the system. The parameter G0 can be as-
sociated with a constant acceleration that is being applied to the system. In-
tuitively this can be seen by noticing that in the damped Mathieu equation
G0 occurs as a constant offset of the forcing function. Commonly this force is
referred to as gravity, but it could also be used to describe some other force
that is acting on the system and is co-linear with the direction of the forcing
function. Similarly the dimensionless parameter Γ0 (defined in equation (3))
can be associated with the physical properties of the fluid and how resistant
they are to change. Notice that for fixed k0 and ω, large values of Γ0 point to
a large surface tension and small fluid density. Due to the combined influences
of these two physical properties understanding the exact effect of Γ0 is difficult.
However, after investigating numerically the effect of larger Γ0 we have been
able to determine that larger values of Γ0 will be more conducive to stable pat-
terns.

We first investigated a system with a large value of G0 and consequently a
small value of Γ0. We maintained a modest value of r = 0.5 so that we would
be within the range of island formation.

The result seen in Figure 9 demonstrates that the occurrence of islands is not
prohibited by large values of G0, however we do notice that the first few tongues
do not exhibit any islands. This is a direct consequence of G0 opposing the forc-
ing function in the damped Mathieu equation. In addition to this the large value
of Γ0 indicates a lower surface tension and a higher density. This is conducive
to preventing the formation of patterns at smaller values of ε.

We then considered the opposite scenario, with a small value of G0 and a large
value of Γ0. We maintained the same value of r = 0.5 within the range of island
formation.

Figure 10 again demonstrates the effects that we observed in the previous ex-
ample. Notice that with a much smaller value of G0 and a larger value of Γ0 we
see islands forming on lower order tongues. Also notice how with a larger value
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Figure 9: Neutral stability curves for inverted square wave forcing with r = 0.5.
The fluid parameters are G0 = 0.22, Γ0 = 0.03, and γ = 0.02. Observe how islands
continue to form, even in the presence of a large value of G0, but do not form on the
lower order tongues. Note that the appearance of some tongues fading out is only an
artifact of our numerical plotter and does not reflect their existence.
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Figure 10: Neutral stability curves for inverted square wave forcing with r = 0.5.
The fluid parameters are G0 = 0.0395, Γ0 = 0.2105, and γ = 0.02. Observe in this
example that large value of Γ0 and a small value of G0 are more conducive to forming
islands on lower order tongues. Note that the appearance of some tongues fading out
is only an artifact of our numerical plotter and does not reflect their existence.
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of Γ0 the fluid has a higher potential for sustaining stable patterns which can
be seen by the smaller minimum values of tongues as well as the occurrence of
multiple islands along the same tongue.1

6.2 Impact of γ

The other dimensionless fluid parameter to be investigated in determining the
presence of islands is γ. It is first important to observe two facts about γ:
first, it is not dependent upon any dispersion relation and second, it occurs
as a coefficient to both the first and zeroth derivative of the solution in the
damped Mathieu equation. Intuitively this suggests that the γ parameter acts
as a damping coefficient. This is also supported by the physical nature of γ be-
ing directly dependent upon the viscosity of the fluid being studied (3). Lower
viscosity fluids will be more conducive to instability in pattern formation as a
lower viscosity fluid will be more reactive to different modes of excitement, in
both constructive and destructive manners.

We began by investigating γ by increasing its value. However, under these
circumstances we noticed that no islands were occurring even with r = 0.5. We
next examined what would occur as we decreased the value of γ while main-
taining r = 0.5 and choosing values of G0 and Γ0 that were NOT conducive to
island formation as established in the previous section.

Figure 11 demonstrates extraordinarily surprising results as it shows numerous
islands of stable patterns occurring for many different harmonic and subhar-
monic tongues! This indicates that with very small values of γ modes with
k > 2 can transition between stability and instability as forcing is increased.
One last interesting conclusion that we drew from these results was that no
islands would ever form on the first harmonic or subharmonic tongue unless the
value of γ was reduced to 0 indicating a fluid with no viscosity. Whenever γ = 0
the damped Mathieu equation reduces to a much simpler form:

p̈k + [Γ0k
3 + (G0 −G(t))k]pk = 0 (36)

How this equation allows for the formation of islands on the first subharmonic
and harmonic tongues is an issue for further work that will be discussed in a
later section.

7 Visualizing Pattern Formation

Having spent a great deal of time investigating the nature of the stability of
patterns forming on the surface of the fluid, we wanted to observe the patterns
created by square wave forcing. In order to do this we developed a numerical

1In order to verify that these conclusions were correct we investigated several other choices
for the fluid parameters, but for purposes of space consideration we have not included them
in this document.
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Figure 11: Neutral stability curves for inverted square wave forcing with r = 0.5.
The fluid parameters are G = 0.2105, Γ0 = .0395, and γ = 0.0005. Observe that a
small value of γ creates numerous islands on the same tongues, allowing for frequent
transition between stable and unstable regions along the same mode. Note that the
appearance of some tongues fading out is only an artifact of our numerical plotter and
does not reflect their existence.
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partial differential equations solver that could solve the Zhang-Viñal’s equations
in two dimensions and then plot the surface of the fluid. We begin by describing
the numerical solver and then demonstrate the patterns that we captured for
both square wave and alternating square wave forcing.

7.1 Numerical Methods

The numerical solver that we used is based on the solver described in [7]. We
review here the basics of the pseudo-spectral method. We start with the Zhang-
Viñal’s equations except we replace the linear components with the label L since
these linear operators can be represented as matrices in our numerical method.
We also replace the non-linear components with F and G, which are vectors, to
find:

∂th = L1h+ L2Φ + F (37)
∂tΦ = L1Φ + L4(t)h+ G. (38)

Here the linear operators are defined by

L1 = γ∇2 (39)
L2 = D̂ (40)

L4(t) = Γ0∇2 −G0 +G(t). (41)

In the next step we move the analysis into the frequency domain by taking
the Fourier transform with respect to the spatial dimension. Note that this
is why our method is referred to as pseudo-spectral as we perform our spatial
analysis using spectral methods while our temporal component remains in the
time domain. The equations can now be represented as:

∂tĥk = L̂1ĥk + L̂2Φ̂k + F̂ (42)

∂tΦ̂k = L̂1Φ̂k + L̂4(t)ĥk + Ĝ (43)

where the linear operators are defined as:

L̂1 = −γ |k|2 (44)
L̂2 = |k| (45)

L̂4(t) = −Γ0 |k|2 −G0 +G(t). (46)

We now can discretize the problem in both the temporal and spatial dimensions.
In order to do this we represent the time derivative as the definition of a deriva-
tive and use a trapezoidal method for the linear terms in the equation. For
the non-linear components we apply a second order Adams-Bashforth method
in order to ensure stability in our numerical method. We can then write the
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equations as:

ĥn+1
k − ĥnk

∆t
=

1
2
L̂1(ĥn+1

k + ĥnk ) +
1
2
L̂2(Φ̂n+1

k − Φ̂nk )

+
1
2
(3F̂nk − F̂n−1

k ) (47)

Φ̂n+1
k − Φ̂nk

∆t
=

1
2
(L̂4

n+1

k ĥn+1
k + L̂4

n

k ĥ
n
k ) +

1
2
L̂1(Φ̂n+1

k − Φ̂nk )

+
1
2
(3Ĝnk − Ĝn−1

k ). (48)

After performing some algebra and solving for ĥn+1
k and Φ̂n+1

k we find that we
can write

ĥn+1
k = P (R1 +M−1

1 M2R2) (49)

Φ̂n+1
k = P (Mn+1

4 M−1
1 R1 +R2) (50)

where the above are defined as

M1 = 1− ∆t
2
L̂1 (51)

M2 =
∆t
2
L̂2 (52)

Mr = 1 +
∆t
2
L̂1 (53)

Mn
4 =

∆t
2
L̂4(t) (54)

Mn+1
4 =

∆t
2
L̂4(t+ ∆t) (55)

R1 = Mrĥ
n
k +M2Φ̂nk +

∆t
2

(3F̂nk − F̂n−1
k ) (56)

R2 = MrΦ̂nk +M4ĥ
n
k +

∆t
2

(3Ĝnk − Ĝn−1
k ) (57)

P = (M1 −Mn+1
4 M−1

1 M2)−1. (58)

Please note that the exponent X−1 in P does not refer to the reciprocal of the
operator, but rather the inverse of the operator. Using MATLAB and the above
equations we were able to code a numerical solver to simulate the surface of the
fluid. After performing some initial experiments with our solver, we discovered
that the error of our numerical method was extremely high. We then employed
several of the methods described in [7] to reduce the effects of this error such
as adding a low pass filter to remove noise from higher frequencies and zeroing
the zero-wavenumber component on a regular basis. Both of these techniques
allowed our simulations to run for much longer periods of time and accumulate
significantly less error. We now describe the results that we observed by using
our numerical solver to simulate the surface of a fluid under different square
wave forcing functions.
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Figure 12: This is a pattern that was observed under square wave forcing with k = 1.1,
ε = 0.5, r = 0.5. Red corresponds to a higher amplitude and blue corresponds to a
lower amplitude.

7.2 Patterns Arising from Square Wave Forcing

In order to observe patterns we first had to choose values for k and ε that are
within the stable pattern regions we observed in the neutral stability curves.
One important aspect to this decision is that we must choose values of ε that
are small enough to only excite the first mode or possibly the first two modes.
This is necessary to reduce the impact of interference of different frequencies on
the formation of the pattern so that we only see the pattern explicitly associated
with the first mode.

We began by examining a case with square wave forcing with k = 1.1 and
r = 0.5. Note from figure 2(a) that this is just inside the first sub-harmonic
tongue and below the threshold for the first harmonic tongue. The pattern that
we observed can be seen in figure 12.

We noticed that this pattern was not especially well formed, but after many
cycles of forcing it remained persistent. We also noticed that it was not tem-
porally static as can be seen in figure 13. Instead the peaks and valleys moved
in circular motions with respect to each other. This is the cause for the poorly
formed boundaries between the different nodes. From this we were able to see
that unlike previous forcing functions, square wave forcing generates patterns
that are stable, but not static.
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Figure 13: This figure shows the formation of several nodes over a small time frame
with r = 0.15, k = 1.1, and ε = 0.5. Each frame is separated by 4 time steps in our
numerical method. Notice how different nodes form and also move across the surface
of the fluid.

The next step that we took was to observe the patterns that formed under in-
verse square wave forcing. We chose k = 0.9 and ε = 0.4 consistent with the
criteria that we determined for observing only the first wave mode. A snapshot
of the pattern can be seen in figure 14.

In the case of this pattern, we noticed that the spatial boundaries of the pattern
were better defined than the previous pattern. In addition to this the pattern
seemed to be more temporally static, although not entirely. While the peaks and
valleys would not migrate in the way that they did under square wave forcing,
they would gradually flip amplitudes; that is valleys would transform into peaks
and peaks would transform into valleys! This cyclic behavior was observed for
all inverse square wave forcing. Another interesting thing to note was that the
pattern did not appear to be of a multiple of the frequency T or T/2 indicating
neither a harmonic nor a sub-harmonic response. Investigating this result is a
topic of future work. We were therefore able to conclude that both square wave
forcing and inverse square wave forcing created patterns that are temporally
dynamic, but entirely different in the nature of their dynamic behavior.

7.3 Patterns Arising from Alternating Square Wave Forc-
ing

After investigating square wave forcing and inverted square wave forcing, we
were interested to see what would occur under alternating square wave forcing
where both forcing functions were present. For this experiment we chose values
of r1 = r2 = 0.25, k = 1.1, and ε = 0.5 based on figure 5(a) and the conditions
set in the previous section. The pattern that we observed can be seen in figure
15.

Interestingly this pattern displayed characteristics of both of the patterns ob-
served in the previous section. In this snapshot we notice that the fluid is
divided into ridges. Like the previous patterns, this one was not temporally
static either. Instead this pattern would constantly jump between the ridge-like
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Figure 14: This is a pattern that was observed under inverse square wave forcing
with k = 0.9, ε = 0.4, and r = 0.5. Red corresponds to a higher amplitude and blue
corresponds to a lower amplitude.

pattern seen in figure 15 and the checkerboard pattern observed in figure 14.
The most interesting part of this was that the ridges would form as a result
of the peaks and valleys rotating into alignment with each other similar to the
rotational movement observed in the pattern shown in figure 12. The peaks and
valleys would then continue to rotate and transition until they returned to the
checkerboard pattern. In this way, we noticed that both the square wave forcing
and alternating square wave forcing were having an effect on the formation of
the pattern in alternating square wave forcing.

7.4 Understanding Pattern Formation Under Square Wave
Forcing

Having observed the different patterns for square wave, inverted square wave,
and alternating square wave forcing we were able to get a better feel for the
stability and types of patterns that formed on the surface of the fluid. Unlike
previous forcing functions that have been studied, square wave forcing didn’t
result in temporally stable patterns, but instead resulted in both spatially and
temporally dynamic patterns. This is an interesting result that requires addi-
tional analysis that we discuss in the next section.
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Figure 15: This is a pattern that was observed under alternating square wave forcing
with k = 1.1, ε = 0.5, and r1 = r2 = 0.25. Red corresponds to locations of higher
amplitude and blue corresponds to locations of lower amplitude.

8 Future Work

Although we have made a large step into investigating the stability and types of
patterns generated by square wave forcing, there are still three open questions
left by our work:

• What is causing the formation of islands in the neutral stability curves?

• Why do square wave forcing functions generate patterns that are different
when alternating the sign of ε?

• Why does square wave forcing generate temporally dynamic patterns?

With regard to the first question we believe that the procedure for analyzing
neutral stability curves has to be modified in order to incorporate information
about the value of r. This is a direct result of the more general form of square
wave forcing. Our hypothesis is that rather than having neutral stability curves
in a two-dimensional space described by k and ε, it will be necessary to describe
neutral stability surfaces that are a function of k, ε, and r. In this sense the
neutral stability curves that we observed in this work are simply cross sections
of the actual neutral stability surfaces. This would help to explain the formation
of islands as they are all part of the same surface, but are just not connected
at individual values of r. We are still investigating whether this concept can be
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used to explain the formation of islands.

With respect to the second question, we would expect to see the same be-
havior by the fluid regardless of the direction that it is being forced, but this
is clearly not the case. Instead, we see marked differences in both the neutral
stability curves and the patterns that form between the two different directions
of forcing. Fortunately this effect has been observed in other forcing functions
[6]. A weakly non-linear analysis can be used to better understand the cause of
this behavior and should be another source of future work.

Lastly, square wave forcing clearly creates patterns that are temporally dy-
namic. This is different from many other forcing functions that have been
observed that form temporally static patterns. The reason for this dynamic be-
havior is not clear from our current research and is certainly an open question
to be investigated.

9 Conclusions

In this work we have investigated the effect of differing types of square wave
forcing on pattern formation in Faraday systems. We have derived equations for
the neutral stability curves and discovered the presence of islands of stability.
Following the discovery of these islands of stability we attempted to better un-
derstand the different parameters that can lead to their formation. We noticed
that inverted square wave forcing with moderate amounts of time spent accel-
erating often resulted in islands. We also investigated the effects of different
dimensionless fluid parameters on the existence of these islands. Lastly, we de-
veloped a numerical solver for the Zhang-Viñal’s partial differential equations in
order to better determine the types of patterns that are generated by different
types of square wave forcing.
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